Wu, Jiahong

Quasi-geostrophic type equations with weak initial data

Electron. J. Differ. Equ. 1998, Paper No. 16, 10 p. (1998)

Summary

Summary: We study the initial value problem for the quasi-geostrophic type equations $$ \displaylines{ {\partial \theta \over \partial t}+u\cdot\nabla\theta + (-\Delta)^{\lambda}\theta=0,\quad \hbox{on } {\Bbb R}^n\times (0,\infty), \cr \theta(x,0)=\theta_0(x), \quad x\in {\Bbb R}^n\,, \cr} $$ where $$ {1 \over2}<\lambda \le 1,\quad 1 less than p less than \infty, \quad {n\over p}\le 2\lambda -1, \quad r={n\over p}-(2\lambda-1) \le 0\,. $$ We also prove that the solution is global if $\theta_0$ is sufficiently small.

Mathematics Subject Classification

35K22, 35Q35, 76U05

Keywords/Phrases

quasi-geostrophic equations, weak data, well-posedness

Downloads