Severa, Pavol

Moduli spaces of flat connections and Morita equivalence of quantum tori

Doc. Math., J. DMV 17, 607-625 (2012)

Summary

Summary: We study moduli spaces of flat connections on surfaces with boundary, with boundary conditions given by Lagrangian Lie subalgebras. The resulting symplectic manifolds are closely related with Poisson-Lie groups and their algebraic structure (such as symplectic groupoid structure) gets a geometrical explanation via 3-dimensional cobordisms. We give a formula for the symplectic form in terms of holonomies, based on a central extension of the gauge group by closed 2-forms. This construction is finally used for a certain extension of the Morita equivalence of quantum tori to the world of Poisson-Lie groups.

Mathematics Subject Classification

53D30

Downloads