Izhboldin, Oleg T.

Motivic equivalence of quadratic forms

Doc. Math., J. DMV 3, 341-351 (1998)

Summary

Summary: Let $X_\phi$ and $X_\psi$ be projective quadrics corresponding to quadratic forms $\phi$ and $\psi$ over a field $F$. If $X_\phi$ is isomorphic to $X_\psi$ in the category of Chow motives, we say that $\phi$ and $\psi$ are motivic isomorphic and write $\phi\msim\psi$. We show that in the case of odd-dimensional forms the condition $\phi\msim\psi$ is equivalent to the similarity of $\phi$ and $\psi$. After this, we discuss the case of even-dimensional forms. In particular, we construct examples of generalized Albert forms $q_1$ and $q_2$ such that $q_1\msim q_2$ and $q_1\not\sim q_2$.

Mathematics Subject Classification

11E81, 19E15

Keywords/Phrases

quadratic form, quadric, Pfister form, Chow motives

Downloads