Anders, Katie

Counting non-standard binary representations

J. Integer Seq. 19(3), Article 16.3.3, 15 p., electronic only (2016)

Summary

Summary: Let $\mathcal{A}$ be a finite subset of $\mathbb{N} $ including 0 and let $f_\mathcal{A}(n)$ be the number of ways to write $n=\sum_{i=0}^{\infty}\epsilon_i2^i$, where $\epsilon_i\in\mathcal{A}$. We consider asymptotics of the summatory function $s_\mathcal{A}(r,m)$ of $f_\mathcal{A}(n)$ from $m2^{r}$ to $m2^{r+1}-1$, and show that $s_{\mathcal{A}}(r,m)\sim c(\mathcal{A},m)\left\vert\mathcal{A}\right\vert^r$ for some nonzero $c(\mathcal{A},m)\in\mathbb{Q} $.

Mathematics Subject Classification

11A63

Keywords/Phrases

digital representation, non-standard binary representation, summatory function

Downloads