Déglise, Frédéric

Bivariant Theories in Motivic Stable Homotopy

Doc. Math. 23, 997-1076 (2018)
DOI: 10.25537/dm.2018v23.997-1076

Summary

The purpose of this work is to study the notion of bivariant theory introduced by Fulton and MacPherson in the context of motivic stable homotopy theory, and more generally in the broader framework of the Grothendieck six functors formalism. We introduce several kinds of bivariant theories associated with a suitable ring spectrum, and we construct a system of orientations (called fundamental classes) for global complete intersection morphisms between arbitrary schemes. These fundamental classes satisfy all the expected properties from classical intersection theory and lead to Gysin morphisms, Riemann-Roch formulas as well asduality statements, valid for general schemes, including singular ones and without need of a base field. Applications are numerous, ranging from classical theories (Betti homology) to generalized theories (algebraic K-theory, algebraic cobordism) and more abstractly to étale sheaves (torsion and $\ell$-adic) and mixed motives.

Mathematics Subject Classification

14F42, 14F20, 19E20, 14C40

Keywords/Phrases

motivic homotopy, fundamental class, bivariant theory, orientation

References

  • 1. J. F. Adams, Stable homotopy theory, Lectures delivered at the University of California at Berkeley, vol. 1961, Springer-Verlag, Berlin-Göttingen-Heidelberg-New York, 1964. zbl 0126.39001; MR0185597.
  • 2. J. Ayoub, Les six opérations de Grothendieck et le formalisme des cycles évanescents dans le monde motivique. I, Astérisque (2007), no. 314, x+466 pp. (2008). zbl 1146.14001; MR2423375.
  • 3. J. Ayoub, Les six opérations de Grothendieck et le formalisme des cycles évanescents dans le monde motivique. II, Astérisque (2007), no. 315, vi+364 pp. (2008). zbl 1153.14001; MR2438151.
  • 4. Joseph Ayoub, Note sur les opérations de Grothendieck et la réalisation de Betti, J. Inst. Math. Jussieu 9 (2010), no. 2, 225--263. zbl 1202.14018; MR2602027.
  • 5. Joseph Ayoub, La réalisation étale et les opérations de Grothendieck, Ann. Sci. Éc. Norm. Supér. (4) 47 (2014), no. 1, 1--145. DOI 10.24033/asens.2210; zbl 1354.18016; MR3205601.
  • 6. Mikhail Bondarko and Frédéric Déglise, Dimensional homotopy t-structures in motivic homotopy theory, Adv. Math. 311 (2017), 91--189. DOI 10.1016/j.aim.2017.02.003; zbl 06766539; MR3628213; arxiv 1512.06044.
  • 7. A. Borel and J. C. Moore, Homology theory for locally compact spaces, Michigan Math. J. 7 (1960), 137--159. DOI 10.1307/mmj/1028998385; zbl 0116.40301; MR0131271.
  • 8. S. Bloch and A. Ogus, Gersten's conjecture and the homology of schemes, Ann. Sci. École Norm. Sup. (4) 7 (1974), 181--201 (1975). DOI 10.24033/asens.1266; zbl 0307.14008; MR0412191.
  • 9. S. Borghesi, Algebraic Morava $K$-theories, Invent. Math. 151 (2003), no. 2, 381--413. DOI 10.1007/s00222-002-0257-4; zbl 1030.55003; MR1953263.
  • 10. D.-C. Cisinski and F. Déglise, Mixed weil cohomologies, Adv. in Math. 230 (2012), no. 1, 55--130. DOI 10.1016/j.aim.2011.10.021; zbl 1244.14014; MR2900540; arxiv 0712.3291.
  • 11. D.-C. Cisinski and F. Déglise, Triangulated categories of mixed motives, 2012. arxiv 0912.2110v3.
  • 12. D.-C. Cisinski and F. Déglise, Integral mixed motives in equal characteristics, Doc. Math. (2015), no. Extra volume: Alexander S. Merkurjev's sixtieth birthday, 145--194. https://www.elibm.org/article/10011415; zbl 1357.19004; MR3404379.
  • 13. Denis-Charles Cisinski and Frédéric Déglise, Étale motives, Compos. Math. 152 (2016), no. 3, 556--666. DOI 10.1112/S0010437X15007459; zbl 06578150; MR3477640; arxiv 1305.5361.
  • 14. F. Déglise, Modules homotopiques avec transferts et motifs génériques, Ph.D. thesis, Univ. Paris VII, 2002, http://deglise.perso.math.cnrs.fr/docs/avant2003/these_deglise.pdf.
  • 15. F. Déglise, Around the Gysin triangle II, Doc. Math. 13 (2008), 613--675. https://www.elibm.org/article/10000106 zbl 1152.14019; MR2466188; https://www.elibm.org/article/10000106 ---newline--- zbl 1152.14019.
  • 16. F. Déglise, Orientable homotopy modules, Am. Journ. of Math. 135 (2013), no. 2, 519--560. DOI 10.1353/ajm.2013.0019; zbl 1275.14020; MR3038720.
  • 17. F. Déglise, On the homotopy heart of mixed motives, 2014. http://deglise.perso.math.cnrs.fr/docs/2014/modhtpb.pdf,.
  • 18. F. Déglise, Orientation theory in arithmetic geometry, 2014. arxiv 1111.4203v2.
  • 19. F. Déglise, Le déterminant de la cohomologie, Current trends in arithmetical algebraic geometry (Arcata, Calif., 1985), Contemp. Math., vol. 67, Amer. Math. Soc., Providence, RI, 1987, pp. 93--177. zbl 0629.14008; MR0902592.
  • 20. F. Déglise, F. Jin, and A. Khan, Fundamental classes in motivic homotopy theory, 2018. arxiv 1805.05920.
  • 21. F. Déglise and N. Mazzari, The rigid syntomic ring spectrum, J. Inst. Math. Jussieu 14 (2015), no. 4, 753--799. DOI 10.1017/S1474748014000152; zbl 1360.14071; MR3394127; arxiv 1211.5065.
  • 22. F. Déglise and W. Nizioł, On p-adic absolute hodge cohomology and syntomic coefficients, I, 2015. arxiv 1508.02567.
  • 23. E. Elmanto, M. Hoyois, A. A. Khan, V. Sosnilo, and M. Yakerson, Motivic infinite loop spaces, in progress, 2017. arxiv 1711.05248.
  • 24. T. Ekedahl, On the adic formalism, The Grothendieck Festschrift, Vol. II, Progr. Math., vol. 87, Birkhäuser Boston, Boston, MA, 1990, pp. 197--218. zbl 0821.14010; MR1106899.
  • 25. W. Fulton and R. MacPherson, Categorical framework for the study of singular spaces, Mem. Amer. Math. Soc. 31 (1981), no. 243, vi+165. zbl 0467.55005; MR0609831.
  • 26. W. Fulton, Intersection theory, second ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 2, Springer-Verlag, Berlin, 1998. zbl 0885.14002; MR0609831.
  • 27. J. L. González and K. Karu, Bivariant algebraic cobordism, Algebra Number Theory 9 (2015), no. 6, 1293--1336. DOI 10.2140/ant.2015.9.1293; zbl 1349.14084; MR3397403; arxiv 1301.4210.
  • 28. M. Hoyois, From algebraic cobordism to motivic cohomology, J. Reine Angew. Math. 702 (2015), 173--226. DOI 10.1515/crelle-2013-0038; zbl 1382.14006; MR3341470; arxiv 1210.7182.
  • 29. M. Hoyois, A quadratic refinement of the Grothendieck--Lefschetz--Verdier trace formula, Algebraic & Geometric Topology 14 (2015), no. 6, 3603--3658. DOI 10.2140/agt.2014.14.3603; zbl 1351.14013; MR3302973; arxiv 1309.6147.
  • 30. L. Illusie, Y. Laszlo, and F. Orgogozo (eds.), Travaux de Gabber sur l'uniformisation locale et la cohomologie étale des schémas quasi-excellents, Société Mathématique de France, Paris, 2014, Séminaire à l'École Polytechnique 2006--2008. [Seminar of the Polytechnic School 2006--2008], With the collaboration of Frédéric Déglise, Alban Moreau, Vincent Pilloni, Michel Raynaud, Joël Riou, Benoît Stroh, Michael Temkin and Weizhe Zheng, Astérisque No. 363-364 (2014). zbl 1297.14003; MR3329783.
  • 31. F. Jin, Algebraic G-theory in motivic homotopy, 2018. arxiv 1806.03927.
  • 32. A. A. Khan, Motivic homotopy theory in derived algebraic geometry, Ph.D. thesis, Universität Duisburg-Essen, 2016, Available at https://www.preschema.com/thesis/.
  • 33. M. Levine, Comparison of cobordism theories, J. Algebra 322 (2009), no. 9, 3291--3317. DOI 10.1016/j.jalgebra.2009.03.032; zbl 1191.14023; MR2567421; arxiv 0807.2238.
  • 34. M. Levine and F. Morel, Algebraic cobordism, Springer Monographs in Mathematics, Springer, Berlin, 2007. DOI 10.1007/3-540-36824-8; zbl 1188.14015; MR2286826; arxiv math/0304206.
  • 35. P. E. Lowrey and T. Schürg, Derived algebraic cobordism, J. Inst. Math. Jussieu 15 (2016), no. 2, 407--443. DOI 10.1017/S1474748014000334; zbl 1375.14087; MR3466543; arxiv 1211.7023.
  • 36. F. Morel, $\mathbb A^1$-algebraic topology over a field, Lecture Notes in Mathematics, vol. 2052, Springer, Heidelberg, 2012. DOI 10.1007/978-3-642-29514-0; zbl 1263.14003; MR2934577.
  • 37. A. Navarro, Riemann-Roch for homotopy invariant K-theory and Gysin morphisms, May 2016. arxiv 1605.00980,.
  • 38. Niko Naumann, Markus Spitzweck, and Paul Arne Ø stvær, Motivic Landweber exactness, Doc. Math. 14 (2009), 551--593. https://www.elibm.org/article/10000132 zbl 1230.55005; MR2565902; https://www.elibm.org/article/10000132 ---newline--- zbl 1230.55005.
  • 39. I. Panin, Oriented cohomology theories of algebraic varieties, $K$-Theory 30 (2003), no. 3, 265--314, Special issue in honor of Hyman Bass on his seventieth birthday. Part III. DOI 10.1023/B:KTHE.0000019788.33790.cb; zbl 1047.19001; MR2064242.
  • 40. I. Panin, Riemann-Roch theorems for oriented cohomology, Axiomatic, enriched and motivic homotopy theory, NATO Sci. Ser. II Math. Phys. Chem., vol. 131, Kluwer Acad. Publ., Dordrecht, 2004, pp. 261--333. zbl 1066.14010; MR2061857.
  • 41. I. Panin, Oriented cohomology theories of algebraic varieties. II (After I. Panin and A. Smirnov), Homology, Homotopy Appl. 11 (2009), no. 1, 349--405. DOI 10.4310/HHA.2009.v11.n1.a14; zbl 1169.14016; MR2529164.
  • 42. D. Quillen, Higher algebraic $K$-theory: I [mr0338129], Cohomology of groups and algebraic $K$-theory, Adv. Lect. Math. (ALM), vol. 12, Int. Press, Somerville, MA, 2010, pp. 413--478. zbl 1198.19001; MR2655184.
  • 43. J. Riou, Algebraic $K$-theory, ${A}^1$-homotopy and Riemann-Roch theorems, J. Topol. 3 (2010), no. 2, 229--264. DOI 10.1112/jtopol/jtq005; zbl 1202.19004; MR2651359; arxiv 0907.2710.
  • 44. Marco Robalo, $K$-theory and the bridge from motives to noncommutative motives, Adv. Math. 269 (2015), 399--550. DOI 10.1016/j.aim.2014.10.011; zbl 1315.14030; MR3281141; arxiv 1306.3795.
  • 45. M. Rost, Chow groups with coefficients, Doc. Math. 1 (1996), No. 16, 319--393. https://www.elibm.org/article/10000028; zbl 0864.14002; MR1418952.
  • 46. R. M. Saramago, Bivariant Versions of Algebraic Cobordism, September 2015. arxiv 1509.00775.
  • 47. Christophe Soulé, Opérations en $K$-théorie algébrique, Canad. J. Math. 37 (1985), no. 3, 488--550. DOI 10.4153/CJM-1985-029-x; zbl 0575.14015; MR0787114.
  • 48. M. Spitzweck, A commutative $P^1$-spectrum representing motivic cohomology over Dedekind domains, 2013. arxiv 1207.4078v3.
  • 49. A. Suslin and V. Voevodsky, Singular homology of abstract algebraic varieties, Invent. Math. 123 (1996), no. 1, 61--94. DOI 10.1007/BF01232367; zbl 0896.55002; MR1376246.
  • 50. R. W. Thomason, Absolute cohomological purity, Bull. Soc. Math. France 112 (1984), no. 3, 397--406. DOI 10.24033/bsmf.2014; zbl 0584.14007; MR0794741.
  • 51. R. W. Thomason and T. Trobaugh, Higher algebraic $K$-theory of schemes and of derived categories, The Grothendieck Festschrift, Vol. III, Progr. Math., vol. 88, Birkhäuser Boston, Boston, MA, 1990, pp. 247--435. zbl 0731.14001; MR1106918.
  • 52. Gabriele Vezzosi, Brown-Peterson spectra in stable $A^1$-homotopy theory, Rend. Sem. Mat. Univ. Padova 106 (2001), 47--64. zbl 1165.14308; MR1876212; arxiv math/0004050.
  • 53. V. Voevodsky, A. Suslin, and E. M. Friedlander, Cycles, transfers and motivic homology theories, Annals of Mathematics Studies, vol. 143, Princeton Univ. Press, 2000. DOI 10.1515/9781400837120; zbl 1021.14006; MR1764197.
  • 54. S. Yokura, Oriented bivariant theories. I, Internat. J. Math. 20 (2009), no. 10, 1305--1334. DOI 10.1142/S0129167X09005777; zbl 1195.55006; MR2574317; arxiv 0811.2261.
  • 55. S. Yokura, Oriented bivariant theory II- Algebraic cobordism of $S$-schemes -. arxiv 1712.08287.

Affiliation

Déglise, Frédéric
IMB (UMR5584), 9 avenue Alain Savary, 21078 Dijon Cedex, France

Downloads