Romagny, Matthieu; Rydh, David; Zalamansky, Gabriel

The Complexity of a Flat Groupoid

Doc. Math. 23, 1157-1196 (2018)
DOI: 10.25537/dm.2018v23.1157-1196

Summary

Grothendieck proved that any finite epimorphism of noetherian schemes factors into a finite sequence of effective epimorphisms. We define the complexity of a flat groupoid $R\rightrightarrows X$ with finite stabilizer to be the length of the canonical sequence of the finite map $R\rightarrow X\times_{X/R} X$, where $X/R$ is the Keel-Mori geometric quotient. For groupoids of complexity at most 1, we prove a theorem of descent along the quotient $X\rightarrow X/R$ and a theorem on the existence of the quotient of a groupoid by a normal subgroupoid. We expect that the complexity could play an important role in the finer study of quotients by groupoids.

Mathematics Subject Classification

14A20, 14L15, 14L30

Keywords/Phrases

groupoids, group schemes, quotients, algebraic spaces, effective epimorphisms, descent

References

  • 1. D. Abramovich, A. Corti, A. Vistoli, Twisted bundles and admissible covers, Special issue in honor of Steven L. Kleiman, Comm. Algebra 31 (2003), no. 8, 3547--3618. DOI 10.1081/AGB-120022434; zbl 1077.14034; MR2007376; arxiv math/0106211.
  • 2. J. Alper, Good moduli spaces for Artin stacks, Ann. Inst. Fourier (Grenoble) 63 (2013), no. 6, 2349--2402. DOI 10.5802/aif.2833; zbl 1314.14095; MR3237451; arxiv 0804.2242.
  • 3. M. Artin, Algebraization of formal moduli. II. Existence of modifications, Ann. of Math. (2) 91 (1970), 88--135. DOI 10.2307/1970602; zbl 0177.49003; MR0260747.
  • 4. M. Artin, Versal deformations and algebraic stacks, Invent. Math. 27 (1974), 165--189. DOI 10.1007/BF01390174; zbl 0317.14001; MR0399094.
  • 5. D. Abramovich, M. Olsson, A. Vistoli, Tame stacks in positive characteristic, Ann. Inst. Fourier (Grenoble) 58 (2008), no. 4, 1057--1091. DOI 10.5802/aif.2378; zbl 1222.14004; MR2427954; arxiv math/0703310.
  • 6. B. Conrad, M. Lieblich, M. Olsson, Nagata compactification for algebraic spaces, J. Inst. Math. Jussieu 11 (2012), no. 4, 747--814. DOI 10.1017/S1474748011000223; zbl 1255.14003; MR2979821; arxiv 0910.5008.
  • 7. A. Grothendieck, with J. Dieudonné, Éléments de géométrie algébrique IV, Étude locale des schémas et des morphismes de schémas III, Publ. Math. IHES no. 28, 1966. DOI 10.1007/BF02684343; zbl 0144.19904; MR0217086.
  • 8. A. Grothendieck, with J. Dieudonné, Éléments de géométrie algébrique IV, Étude locale des schémas et des morphismes de schémas IV, Publ. Math. IHES no. 32, 1967. zbl 0153.22301; MR0238860.
  • 9. T. Ekedahl, Canonical models of surfaces of general type in positive characteristic, Publ. Math. IHÉS no. 67 (1988), 97--144. DOI 10.1007/BF02699128; zbl 0674.14028; MR0972344.
  • 10. D. Ferrand, Conducteur, descente et pincement, Bull. Soc. Math. France 131 (2003), no. 4, 553--585. DOI 10.24033/bsmf.2455; zbl 1058.14003; MR2044495.
  • 11. J. Giraud, Méthode de la descente, Bull. Soc. Math. France Mém. 2 (1964). zbl 0211.32902; MR0190142.
  • 12. A. Grothendieck, Technique de descente et théorèmes d'existence en géometrie algébrique I. Généralités. Descente par morphismes fidèlement plats, Séminaire Bourbaki, Vol. 5, Exp. No. 190, 299--327, SMF, 1995. zbl 0229.14007; MR1603475.
  • 13. S. Keel, S. Mori, Quotients by groupoids, Ann. Math. (2) 145, No.1, 193-213 (1997). DOI 10.2307/2951828; zbl 0881.14018; MR1432041; arxiv alg-geom/9508012.
  • 14. J. Kollár, Quotient spaces modulo algebraic groups, Ann. of Math. (2) 145 (1997), no. 1, 33--79. DOI 10.2307/2951823; zbl 0881.14017; MR1432036; arxiv alg-geom/9503007.
  • 15. A. H. M. Levelt, Sur la pro-représentabilité de certains foncteurs en géométrie algébrique, Notes from Mathematisch Instituut, Katholieke Universiteit, Nijmegen (The Netherlands), 1965. Available at hrefhttp://www.math.ru.nl/ ahml/prorep.pdfhttp://www.math.ru.nl/ ahml/prorep.pdf.
  • 16. M. Lieblich, Groupoids and quotients in algebraic geometry, Snowbird lectures in algebraic geometry, 119--136, Contemp. Math., 388, Amer. Math. Soc., 2005. MR2182893.
  • 17. M. Olsson, Integral models for moduli spaces of G-torsors, Ann. Inst. Fourier (Grenoble) 62 (2012), no. 4, 1483--1549. DOI 10.5802/aif.2728; zbl 1293.14004; MR3025749.
  • 18. J.-C. Raoult, Compactification des espaces algébriques, C. R. Acad. Sci. Paris Sér. A 278 (1974), 867--869. zbl 0278.14002; MR0340256.
  • 19. A. N. Rudakov, I. Shafarevich, Inseparable morphisms of algebraic surfaces, Izv. Akad. Nauk SSSR Ser. Mat. 40 (1976), no. 6, 1269--1307. zbl 0379.14006; MR0460344.
  • 20. D. Rydh, Submersions and effective descent of étale morphisms, Bull. Soc. Math. France 138(2) (2010), 181--230. DOI 10.24033/bsmf.2588; zbl 1215.14004; MR2679038; arxiv 0710.2488.
  • 21. D. Rydh, Compactification of tame Deligne--Mumford stacks, preprint, 2011.
  • 22. D. Rydh, Existence and properties of geometric quotients, J. Algebraic Geom. 22 (2013), no. 4, 629--669. DOI 10.1090/S1056-3911-2013-00615-3; zbl 1278.14003; MR3084720; arxiv 0708.3333.
  • 23. A. Grothendieck, Revêtements étales et groupe fondamental, Documents Mathématiques 3, Société Mathématique de France, 2003. zbl 1039.14001.
  • 24. M. Demazure, A. Grothendieck, Schémas en groupes, Tome II. Groupes de type multiplicatif, et structure des schémas en groupes généraux. Lecture Notes in Mathematics 152, Springer, 1970. DOI 10.1007/BFb0059005; zbl 0209.24201; MR0274459.
  • 25. M. Artin, A. Grothendieck, J. L. Verdier, Théorie des topos et cohomologie étale des schémas, Tome 2, Séminaire de Géométrie Algébrique du Bois-Marie 1963--1964 (SGA 4), Lecture Notes in Mathematics 270. Springer-Verlag, 1972. DOI 10.1007/BFb0061319; zbl 0237.00012; MR0354652.
  • 26. P. Berthelot, A. Grothendieck, L. Illusie, Théorie des intersections et théorème de Riemann--Roch, Séminaire de Géométrie Algébrique du Bois-Marie 1966--1967, Lecture Notes in Mathematics, Vol. 225, Springer-Verlag, 1971. zbl 0218.14001; MR0354655.
  • 27. The Stacks Project Authors, Stacks Project, http://stacks.math.columbia.edu, 2016.
  • 28. M. Temkin, I. Tyomkin, Ferrand pushouts for algebraic spaces, Eur. J. Math. 2 (2016), no. 4, 960--983. DOI 10.1007/s40879-016-0115-3; zbl 1375.14012; MR3572553.
  • 29. E. B. Vinberg, Complexity of actions of reductive groups, Funktsional. Anal. i Prilozhen. 20 (1986), no. 1, 1--13. English translation: Functional Anal. Appl. 20 (1986), no. 1, 1--11. DOI 10.1070/RM1988v043n02ABEH001715; zbl 0681.14025; MR0831043.
  • 30. A. Vistoli, Grothendieck topologies, fibered categories and descent theory, Fundamental algebraic geometry, 1--104, Math. Surveys Monogr. 123, AMS, 2005. MR2223406.

Affiliation

Romagny, Matthieu
IRMAR, Université Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France
Rydh, David
KTH Royal Institute of Technology, Department of Mathematics, 10044 Stockholm, Sweden
Zalamansky, Gabriel
Universiteit Leiden, Snellius Building, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands

Downloads