Amou, Masaaki; Bugeaud, Yann

Mahler's classification of complex numbers

Doc. Math. Extra Vol. Mahler Selecta, 79-93 (2019)
DOI: 10.25537/dm.2019.SB-79-93

Mathematics Subject Classification

11-03, 11J72

References

  • [M9]. K. Mahler, Über Beziehungen zwischen der Zahl \(e\) und Liouvilleschen Zahlen, Math. Z. 31 (1930), 729-732.
  • [M11]. K. Mahler, Zur Approximation der Exponentialfunktion und des Logarithmus, I, II, J. Reine Angew. Math. (Crelle) 166 (1932), 118-150. ([M11] and [M13] combined).
  • [M12]. K. Mahler, Über das Maßder Menge aller \(S\)-Zahlen, Math. Ann. 106 (1932), 131-139.
  • [M27]. K. Mahler, Über eine Klassen-Einteilung der \(p\)-adischen Zahlen, Mathematica (Zutphen) 3 (1935), 177-185.
  • [M179]. K. Mahler, On the order function of a transcendental number, Acta Arithm. 18 (1971), 63-76.
  • 1. B. Adamczewski and Y. Bugeaud, Nombres réels de complexité sous-linéaire: mesures d'irrationalité et de transcendance, J. Reine Angew. Math. (Crelle) 658 (2011), 65-98.
  • 2. J.-P. Allouche and J. Shallit, Automatic Sequences, Cambridge University Press, Cambridge, 2003.
  • 3. F. Amoroso, On the distribution of complex numbers according to their transcendence types, Ann. Mat. Pura Appl. (4) 151 (1988), 359-368.
  • 4. M. Amou, An improvement of a transcendence measure of Galochkin and Mahler's \(S\)-numbers, J. Aust. Math. Soc. Ser. A 52 (1992), no. 1, 130-140.
  • 5. M. Amou, On Sprindžuk's classification of transcendental numbers, J. Reine Angew. Math. (Crelle) 470 (1996), 27-50.
  • 6. M. Amou and Y. Bugeaud, On integer polynomials with multiple roots, Mathematika 54 (2007), no. 1-2, 83-92.
  • 7. A. Baker, On a theorem of Sprindžuk, Proc. Roy. Soc. London Ser. A 292 (1966), 92-104.
  • 8. A. Baker, Transcendental Number Theory, Cambridge University Press, London, 1975.
  • 9. A. Baker and W. M. Schmidt, Diophantine approximation and Hausdorff dimension, Proc. London Math. Soc. (3) 21 (1970), 1-11.
  • 10. R. C. Baker, On approximation with algebraic numbers of bounded degree, Mathematika 23 (1976), no. 1, 18-31.
  • 11. P.-G. Becker, \(k\)-regular power series and Mahler-type functional equations, J. Number Theory 49 (1994), no. 3, 269-286.
  • 12. J. P. Bell, Y. Bugeaud, and M. Coons, Diophantine approximation of Mahler numbers, Proc. Lond. Math. Soc. (3) 110 (2015), no. 5, 1157-1206.
  • 13. V. Beresnevich, On approximation of real numbers by real algebraic numbers, Acta Arith. 90 (1999), no. 2, 97-112.
  • 14. V. I. Bernik, The exact order of approximating zero by values of integral polynomials, Acta Arith. 53 (1989), no. 1, 17-28.
  • 15. V. I. Bernik and M. M. Dodson, Metric Diophantine Approximation on Manifolds, Cambridge University Press, Cambridge, 1999.
  • 16. Y. Bugeaud, Approximation by algebraic numbers, Cambridge University Press, Cambridge, 2004.
  • 17. Y. Bugeaud, Mahler's classification of numbers compared with Koksma's. III, Publ. Math. Debrecen 65 (2004), no. 3-4, 305-316.
  • 18. Y. Bugeaud, Continued fractions with low complexity: transcendence measures and quadratic approximation, Compos. Math. 148 (2012), no. 3, 718-750.
  • 19. Y. Bugeaud and A. Dujella, Root separation for irreducible integer polynomials, Bull. Lond. Math. Soc. 43 (2011), no. 6, 1239-1244.
  • 20. G. Chudnovsky, Algebraic independence of the values of elliptic function at algebraic points, Invent. Math. 61 (1980), no. 3, 267-290.
  • 21. A. Durand, Quatre problèmes de Mahler sur la fonction ordre d'un nombre transcendant, Bull. Soc. Math. France 102 (1974), 365-377.
  • 22. A. I. Galočkin, A transcendence measure for the values of functions satisfying certain functional equations, Mat. Zametki 27 (1980), no. 2, 175-183.
  • 23. D. Y. Kleinbock and G. A. Margulis, Flows on homogeneous spaces and Diophantine approximation on manifolds, Ann. of Math. (2) 148 (1998), no. 1, 339-360.
  • 24. J. F. Koksma, Über die Mahlersche Klasseneinteilung der transzendenten Zahlen und die Approximation komplexer Zahlen durch algebraische Zahlen, Monatsh. Math. Phys. 48 (1939), 176-189.
  • 25. S. Lang, A transcendence measure for \(E\)-functions, Mathematika 9 (1962), 157-161.
  • 26. S. Lang, Introduction to Transcendental Numbers, Addison-Wesley, Reading, MA, 1966.
  • 27. W. J. LeVeque, On Mahler's \(U\)-numbers, J. London Math. Soc. 28 (1953), 220-229.
  • 28. J. Liouville, Remarques relatives à des classes très-étendues de quantités dont la valeur n'est ni algébrique, ni même réductible à des irrationnelles algébriques, C. R. Acad. Sci. Paris 18 (1844), 883-885.
  • 29. Ju. V. Nesterenko, An order function for almost all numbers, Mat. Zametki 15 (1974), 405-414.
  • 30. Ku. Nishioka, Mahler Functions and Transcendence, Lecture Notes in Mathematics, vol. 1631, Springer, Berlin, 1996.
  • 31. T. Pejković, On \(p\)-adic \(T\)-numbers, Publ. Math. Debrecen 82 (2013), no. 3-4, 549-567.
  • 32. P. Philippon, Classification de Mahler et distances locales, Bull. Aust. Math. Soc. 49 (1994), no. 2, 219-238.
  • 33. J. Popken, Zur Transzendenz von \(e\), Math. Z. 29 (1929), no. 1, 525-541.
  • 34. É. Reyssat, Approximation algébrique de nombres liés aux fonctions elliptiques et exponentielle, Bull. Soc. Math. France 108 (1980), no. 1, 47-79.
  • 35. H. P. Schlickewei, \(p\)-adic \(T\)-numbers do exist, Acta Arith. 39 (1981), no. 2, 181-191.
  • 36. W. M. Schmidt, \(T\)-numbers do exist, Symposia Mathematica, Vol. IV (INDAM, Rome, 1968/69), Academic Press, London, 1970, pp. 3-26.
  • 37. W. M. Schmidt, Mahler's \(T\)-numbers, 1969 Number Theory Institute (Proc. Sympos. Pure Math., Vol. XX, D. J. Lewis (ed.), State Univ. New York, Stony Brook, NY, 1969), Amer. Math. Soc., Providence, RI, 1971, pp. 275-286.
  • 38. T. Schneider, Einführung in die transzendenten Zahlen, Springer, Berlin, 1957.
  • 39. A. B. Shidlovskii, Transcendental Numbers, de Gruyter, Berlin, 1989.
  • 40. C. L. Siegel, Über einige Anwendungen diophantischer Approximationen, Abh. Preuß. Akad. Wiss. Phys.-Math. Kl. 1 (1929), 1-70.
  • 41. V. G. Sprindžuk, On a classification of transcendental numbers, Litovsk. Mat. Sb. 2 (1962), no. 2, 215-219.
  • 42. V. G. Sprindžuk, A proof of Mahler's conjecture on the measure of the set of \(S\)-numbers, Izv. Akad. Nauk SSSR Ser. Mat. 29 (1965), 379-436.
  • 43. V. G. Sprindžuk, Mahler's Problem in Metric Number Theory, American Mathematical Society, Providence, RI, 1969.
  • 44. K. B. Stolarsky, Algebraic Numbers and Diophantine Approximation, Marcel Dekker, New York, 1974.
  • 45. E. Wirsing, Approximation mit algebraischen Zahlen beschränkten Grades, J. Reine Angew. Math. (Crelle) 206 (1961), 67-77.

Affiliation

Amou, Masaaki
Department of Mathematics, Gunma University, Tenjin-cho 1-5-1, Kiryu 376-8515, Japan
Bugeaud, Yann
Université de Strasbourg et C.N.R.S., IRMA, U.M.R. 7501, 7 rue René Descartes, 67084 Strasbourg Cedex, France

Downloads