Nesterenko, Yuri

Mahler and transcendence: effective constructions in transcendental number theory

Doc. Math. Extra Vol. Mahler Selecta, 123-148 (2019)
DOI: 10.25537/dm.2019.SB-123-148

Mathematics Subject Classification

11-03, 11J81

References

  • [M11]. K. Mahler, Zur Approximation der Exponentialfunktion und des Logarithmus, I, J. Reine Angew. Math. (Crelle) 166 (1931), 118-136.
  • [M13]. K. Mahler, Zur Approximation der Exponentialfunktion und des Logarithmus, II, J. Reine Angew. Math. (Crelle) 166 (1932), 137-150.
  • [M14]. K. Mahler, Ein Beweis der Transzendenz der \(P\)-adischen Exponentialfunktion, J. Reine Angew. Math. (Crelle) 169 (1932), 61-66.
  • [M30]. K. Mahler, Über transzendente \(P\)-adische Zahlen, Compositio Math. 2 (1935), 259-275.
  • [M30a]. K. Mahler, A correction to ``Über transzendente \(P\)-adische Zahlen'', Compositio Math. 8 (1949), 112.
  • [M33]. J. Popken and K. Mahler, Ein neues Prinzip für Transzendenzbeweise, Proc. Akad. Wet. Amsterdam 38 (1935), 864-871.
  • [M118]. K. Mahler, On the approximation of logarithms of algebraic numbers, Philos. Trans. R. Soc. London, Ser. A 245 (1953), 371-398.
  • [M119]. K. Mahler, On the approximation of \(\pi \), Nederl. Akad. Wet., Proc., Ser. A 56 (1953), 30-42.
  • [M164]. K. Mahler, Applications of some formulae by Hermite to the approximation of exponentials and logarithms, Math. Ann. 168 (1967), 200-227.
  • [M170]. K. Mahler, Remarks on a paper by W. Schwarz, J. Number Theory 1 (1969), 512-521.
  • [M171]. K. Mahler, On algebraic differential equations satisfied by automorphic functions, J. Aust. Math. Soc. 10 (1969), 445-450.
  • [M188]. K. Mahler, On the coefficients of transformation polynomials for the modular function, Bull. Aust. Math. Soc. 10 (1974), 197-218.
  • [M200]. K. Mahler, Lectures on transcendental numbers, Edited and completed by B. Divis and W. J. LeVeque, Springer, Berlin, 1976.
  • 1. K. Ball and T. Rivoal, Irrationalité d'une infinité de valeurs de la fonction zêta aux entiers impairs, Invent. Math. 146 (2001), no. 1, 193-207.
  • 2. K. Barré-Sirieix, G. Diaz, F. Gramain, and G. Philibert, Une preuve de la conjecture de Mahler-Manin, Invent. Math. 124 (1996), no. 1-3, 1-9.
  • 3. M. A. Bennett, Rational approximation to algebraic numbers of small height: the Diophantine equation \(|ax^n-by^n|=1\), J. Reine Angew. Math. 535 (2001), 1-49.
  • 4. N. I. Fel'dman and Yu. V. Nesterenko, Transcendental numbers, Number theory, IV, Encyclopaedia Math. Sci., vol. 44, Springer, Berlin, 1998, pp. 1-345.
  • 5. A. I. Galočkin, Improving the estimates of certain linear forms, Mat. Zametki 20 (1976), no. 1, 35-45.
  • 6. A. O. Gel'fond, Essay on the history and current state of the theory of transcendental numbers, Selected works, Izdat. ``Nauka'', Moscow, 1973, pp. 16-37.
  • 7. A. O. Gel'fond, On Hilbert's 7th problem, Selected works, vol. 2, Izdat. ``Nauka'', Moscow, 1973, pp. 48-50.
  • 8. G. Halphen, Sur une système d'equations différentielles, C. R. Acad. Sci. Paris 92 (1881), 1101-1103.
  • 9. Ch. Hermite, Oeuvres, Gauthier-Villar, Paris, 1917.
  • 10. N. Koblitz, \(p\)-adic numbers, \(p\)-adic analysis, and zeta-functions, Springer-Verlag, New York-Heidelberg, 1977, Graduate Texts in Mathematics, vol. 58.
  • 11. J. F. Koksma and J. Popken, Zur Transzendenz von \(e^\pi \), J. Reine Angew. Math. 168 (1932), 211-230.
  • 12. R. O. Kuzmin, Sur une nouvelle classe de nombres transcendants, Bull. Acad. Sci. de l'URSS VII ser. 6 (1930), 585-597.
  • 13. S. Lang, Elliptic functions, Addison-Wesley Publishing Co., Inc., Reading, Mass.-London-Amsterdam, 1973, With an appendix by J. Tate.
  • 14. D. F. Lawden, Elliptic functions and applications, Applied Mathematical Sciences, vol. 80, Springer-Verlag, New York, 1989.
  • 15. F. Lindemann, Ueber die Zahl \(\pi \), Math. Ann. 20 (1882), no. 2, 213-225.
  • 16. Ju. I. Manin, Cyclotomic fields and modular curves, Uspehi Mat. Nauk 26 (1971), no. 6(162), 7-71.
  • 17. Yu. V. Nesterenko, Linear independence of numbers, Vestnik Moskov. Univ. Ser. I Mat. Mekh. (1985), no. 1, 46-49, 108.
  • 18. Yu. V. Nesterenko, Modular functions and transcendence questions, Mat. Sb. 187 (1996), no. 9, 65-96.
  • 19. Yu. V. Nesterenko, Some remarks on \(\zeta(3)\), Mat. Zametki 59 (1996), no. 6, 865-880, 960.
  • 20. Yu. V. Nesterenko, Algebraic independence of \(p\)-adic numbers, Izv. Ross. Akad. Nauk Ser. Mat. 72 (2008), no. 3, 159-174.
  • 21. E. M. Nikišin, Irrationality of values of functions \(F(x,s)\), Mat. Sb. (N.S.) 109(151) (1979), no. 3, 410-417, 479.
  • 22. T. Rivoal, La fonction zêta de Riemann prend une infinité de valeurs irrationnelles aux entiers impairs, C. R. Acad. Sci. Paris Sér. I Math. 331 (2000), no. 4, 267-270.
  • 23. V. Kh. Salikhov, On the measure of irrationality of \(\pi \), Mat. Zametki 88 (2010), no. 4, 583-593.
  • 24. C. L. Siegel, Über einige Anwendungen diophantischer Approximationen., Abh. Preuss. Akad. Wiss., Phys.-Math. Kl. 1929 (1929), no. 1, 1-70.
  • 25. G. R. Veldkamp, Ein Transzendenz-Satz für \(p\)-adische Zahlen, J. London Math. Soc. 15 (1940), 183-192.
  • 26. M. Waldschmidt, Elliptic functions and transcendence, Surveys in number theory, Dev. Math., vol. 17, Springer, New York, 2008, pp. 143-188.
  • 27. C. Weierstrass, Zu Lindemann's Abhandlung: ``Über die Ludolph''sche Zahl'', Berl. Ber. 1885 (1885), 1067-1086.
  • 28. E. T. Whittaker and G. N. Watson, A course in modern analysis, Cambridge University Press, 1927.

Affiliation

Nesterenko, Yuri
Department of Number Theory, Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, 119991 Moscow, Leninskie Gory 1, Russian Federation

Downloads