Bugeaud, Yann; Coons, Michael

A Mahler miscellany

Doc. Math. Extra Vol. Mahler Selecta, 179-190 (2019)
DOI: 10.25537/dm.2019.SB-179-190

Mathematics Subject Classification

11-03, 01A70

Keywords/Phrases

Diophantine approximation, algebraic number thory, \(p\)-adic analysis, distribution modulo 1

References

  • [M1]. K. Mahler, The spectrum of an array and its application to the study of the translation properties of a simple class of arithmetical functions, II: On the translation properties of a simple class of arithmetical functions, J. Math. Phys., Mass. Inst. Techn. 6 (1927), 158-163.
  • [M41]. K. Mahler, Ein Analogon zu einem Schneiderschen Satz, I, Proc. Akad. Wet. Amsterdam 39 (1936), 633-640.
  • [M42]. K. Mahler, Ein Analogon zu einem Schneiderschen Satz, II, Proc. Akad. Wet. Amsterdam 39 (1936), 729-737.
  • [M43]. K. Mahler, Über die Annäherung algebraischer Zahlen durch periodische Algorithmen, Acta Math. 68 (1937), 109-144.
  • [M45]. K. Mahler, Über die Dezimalbruchentwicklung gewisser Irrationalzahlen, Mathematica (Zutphen) 6 (1937), 22-36.
  • [M46]. K. Mahler, Arithmetische Eigenschaften einer Klasse von Dezimalbrüchen, Proc. Akad. Wetensch. Amsterdam 40 (1937), 421-428.
  • [M51]. K. Mahler, On the fractional parts of the powers of a rational number, Acta Arithm. 3 (1938), 89-93.
  • [M52]. K. Mahler, Über einen Satz von Th. Schneider, Acta Arithm. 3 (1938), 94-101.
  • [M53]. K. Mahler, A theorem on inhomogeneous Diophantine inequalities, Proc. Akad. Wet. Amsterdam 41 (1938), 634-637.
  • [M72]. K. Mahler, An analogue to Minkowski's geometry of numbers in a field of series, Ann. Math. (2) 42 (1941), 488-522.
  • [M106]. K. Mahler, On a theorem of Liouville in fields of positive characteristic, Can. J. Math. 1 (1949), 397-400.
  • [M135]. K. Mahler, On the fractional parts of the powers of a rational number, II, Mathematika 4 (1957), 122-124.
  • [M139]. K. Mahler, On the Chinese remainder theorem, Math. Nachr. 18 (1958), 120-122.
  • [M146]. K. Mahler, Lectures on diophantine approximations, Part I: \(g\)-adic numbers and Roth's theorem, Ann. Arbor: University of Notre Dame, 188 p., 1961.
  • [M157]. K. Mahler, Inequalities for ideal bases in algebraic number fields, J. Aust. Math. Soc. 4 (1964), 425-448.
  • [M166]. K. Mahler, On a lemma by A. B. Shidlovskiĭ, Math. Zametki Acad. Nauk SSR2 (1967), 25-32.
  • [M167]. K. Mahler, An unsolved problem on the powers of \(3/2\), J. Aust. Math. Soc. 8 (1968), 313-321.
  • [M171]. K. Mahler, On algebraic differential equations satisfied by automorphic functions, J. Aust. Math. Soc. 10 (1969), 445-450.
  • [M185]. K. Mahler, Arithmetical properties of the digits of the multiples of an irrational number, Bull. Aust. Math. Soc. 8 (1973), 191-203.
  • [M191]. K. Mahler, On the digits of the multiples of an irrational \(p\)-adic number, Proc. Cambridge Philos. Soc. 76 (1974), 417-422.
  • [M200]. K. Mahler, Lectures on transcendental numbers, Edited and completed by B. Divis and W. J. LeVeque, Springer, Berlin, 1976.
  • [M209]. K. Mahler, Fifty years as a Mathematician, J. Number Theory 14 (1982), 121-155.
  • [M216]. K. Mahler, Some suggestions for further research, Bull. Aust. Math. Soc. 29 (1984), 101-108.
  • 1. B. Adamczewski and Y. Bugeaud, On the complexity of algebraic numbers I. Expansions in integer bases, Ann. Math. 165 (2007), 547-565.
  • 2. B. Adamczewski, Y. Bugeaud and F. Luca, Sur la complexité des nombres algébriques, C. R. Acad. Sci. Paris 339 (2004), 11-14.
  • 3. J.-P. Allouche and J. O. Shallit, Automatic Sequences: Theory, Applications, Generalizations, Cambridge University Press, Cambridge, 2003.
  • 4. M. Baake and U. Grimm, Aperiodic Order. Vol. 1: A Mathematical Invitation, Cambridge University Press, Cambridge, 2013.
  • 5. L. E. Baum and M. M. Sweet, Continued fractions of algebraic power series in characteristic 2, Ann. Math. 103 (1976), 593-610.
  • 6. R. Broderick, L. Fishman and A. Reich, Intrinsic approximation on Cantor-like sets, a problem of Mahler, Moscow J. Comb. Number Theory 1 (2011), 3-12.
  • 7. Y. Bugeaud, Extensions of the Cugiani-Mahler Theorem, Ann. Scuola Normale Superiore di Pisa 6 (2007), 477-498.
  • 8. Y. Bugeaud, Diophantine approximation and Cantor sets, Math. Ann. 341 (2008), 677-684.
  • 9. Y. Bugeaud, Quantitative versions of the subspace theorem and applications, J. Théor. Nombres Bordeaux 23 (2011), 35-57.
  • 10. Y. Bugeaud, Distribution modulo one and Diophantine approximation, Cambridge University Press, Cambridge, 2012.
  • 11. P. Corvaja and U. Zannier, On the rational approximations to the powers of an algebraic number: Solution of two problems of Mahler and Mendès France, Acta Math. 193 (2004), 175-191.
  • 12. M. Cugiani, Sull'approssimazione di numeri algebrici mediante razionali, Collectanea Mathematica, Pubblicazioni dell'Istituto di matematica dell'Università di Milano 169, Ed. C. Tanburini, Milano, pg. 5, 1958.
  • 13. A. Dubickas, Arithmetical properties of powers of algebraic numbers, Bull. London Math. Soc. 38 (2006), 70-80.
  • 14. L. Fishman and D. Simmons, Intrinsic approximation for fractals defined by rational iterated function systems: Mahler's research suggestion, Proc. London Math. Soc. 109 (2014), 189-212.
  • 15. L. Flatto, J. C. Lagarias and A. D. Pollington, On the range of fractional parts \(\{\xi(p/q)^n\}\), Acta Arithm. 70 (1995), 125-147.
  • 16. A. Kulkarni, N. M. Mavraki and K. D. Nguyen, Algebraic approximations to linear combinations of powers: an extension of results by Mahler and Corvaja-Zannier, Trans. Amer. Math. Soc. 371 (2019), 3787-3804.
  • 17. A. Lasjaunias, A survey of Diophantine approximation in fields of power series, Monatsh. Math. 130 (2000), 211-229.
  • 18. D. Marques and C. G. Moreira, A positive answer for a question proposed by K. Mahler, Math. Ann. 368 (2017), 1059-1062.
  • 19. K. Roth, Rational approximations to algebraic numbers, Mathematika 2 (1955), 1-20; corrigendum, 168.
  • 20. W. M. Schmidt, On continued fractions and Diophantine approximation in power series fields, Acta Arithm. 95 (2000), 139-166.
  • 21. T. Schneider, Über die Approximation algebraischer Zahlen, J. Reine Angew. Math. (Crelle) 175 (1936), 182-192.
  • 22. E. de Shalit, Mahler bases and elementary \(p\)-adic analysis, J. Théor. Nombres Bordeaux 28 (2016), 597-620.
  • 23. G. Troi and U. Zannier, Note on the density constant in the distribution of self-numbers, II, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 2 (1999), 397-399.
  • 24. N. Wiener, The spectrum of an array and its application to the study of the translation properties of a simple class of arithmetical functions, I: the spectrum of an array, J. Math. Phys., Mass. Inst. Techn. 6 (1927), 145-157.

Affiliation

Bugeaud, Yann
Université de Strasbourg et C.N.R.S., IRMA, U.M.R. 7501, 7 rue René Descartes, 67084 Strasbourg Cedex, France
Coons, Michael
School of Mathematical and Physical Sciences, University of Newcastle, 130 University Drive, Callaghan, NSW 2308, Australia

Downloads