Scherotzke, Sarah; Sibilla, Nicolò; Talpo, Mattia

Parabolic Semi-Orthogonal Decompositions and Kummer Flat Invariants of Log Schemes

Doc. Math. 25, 955-1009 (2020)
DOI: 10.25537/dm.2020v25.955-1009
Communicated by Henning Krause

Summary

We construct semi-orthogonal decompositions on triangulated categories of parabolic sheaves on certain kinds of logarithmic schemes. This provides a categorification of the decomposition theorems in Kummer flat K-theory due to Hagihara and Nizioł. Our techniques allow us to generalize Hagihara and Nizioł's results to a much larger class of invariants in addition to K-theory, and also to extend them to more general logarithmic stacks.

Mathematics Subject Classification

14A21, 14F08, 19E08

Keywords/Phrases

logarithmic geometry, semi-orthogonal decompositions, K-theory

References

  • 1. Dan Abramovich and Qile Chen. Stable logarithmic maps to Deligne-Faltings pairs, II. Asian J. Math., 18(3):465-488, 2014. DOI 10.4310/AJM.2014.v18.n3.a5; zbl 1321.14025; MR3257836; arxiv 1102.4531.
  • 2. David Ben-Zvi, John Francis, and David Nadler. Integral transforms and Drinfeld centers in derived algebraic geometry. J. Amer. Math. Soc., 23(4):909-966, 2010. DOI 10.1090/S0894-0347-10-00669-7; zbl 1202.14015; MR2669705; arxiv 0805.0157.
  • 3. Daniel Bergh, Valery A. Lunts, and Olaf M. Schnürer. Geometricity for derived categories of algebraic stacks. Selecta Math., 22(4):2535-2568, 2016. DOI 10.1007/s00029-016-0280-8; zbl 1360.14058; MR3573964; arxiv 1601.04465.
  • 4. A. Blumberg, D. Gepner, and G. Tabuada. A universal characterization of higher algebraic K-theory. Geom. Topol., 17(2):733-838, 2013. DOI 10.2140/gt.2013.17.733; zbl 1267.19001; MR3070515; arxiv 1001.2282.
  • 5. Alexei I. Bondal and Mikhail M. Kapranov. Representable functors, Serre functors, and mutations. Izvestiya: Mathematics, 35(3):519-541, 1990. DOI 10.1070/IM1990v035n03ABEH000716; zbl 0703.14011; MR1039961.
  • 6. Niels Borne and Angelo Vistoli. Parabolic sheaves on logarithmic schemes. Adv. Math., 231(3-4):1327-1363. DOI 10.1016/j.aim.2012.06.015; zbl 1256.14002; MR2964607; arxiv 1001.0466.
  • 7. Charles Cadman. Using stacks to impose tangency conditions on curves. Amer. J. Math., 129(2):405-427, 2007. DOI 10.1353/ajm.2007.0007; zbl 1127.14002; MR2306040; arxiv math/0312349.
  • 8. Andrei Cǎldǎraru. The Mukai pairing, II: the Hochschild-Kostant-Rosenberg isomorphism. Adv. Math., 194(1):34-66, 2005. DOI 10.1016/j.aim.2004.05.012; zbl 1098.14011; MR2141853; arxiv math/0308080.
  • 9. David Carchedi, Sarah Scherotzke, Nicolò Sibilla, and Mattia Talpo. Kato-Nakayama spaces, infinite root stacks, and the profinite homotopy type of log schemes. Geom. Topol., 21(5):3093-3158, 2017. DOI 10.2140/gt.2017.21.3093; zbl 1401.14113; MR3687115; arxiv 1511.00037.
  • 10. Qile Chen. Stable logarithmic maps to Deligne-Faltings pairs, I. Ann. of Math., 180(2):455-521, 2014. DOI 10.4007/annals.2014.180.2.2; zbl 1311.14028; MR3224717; arxiv 1008.3090.
  • 11. Denis-Charles Cisinski and Gonçalo Tabuada. Non-connective K-theory via universal invariants. Compos. Math., 147(4):1281-1320, 2011. DOI 10.1112/S0010437X11005380; zbl 1247.19001; MR2822869; arxiv 0903.3717.
  • 12. John Collins, Alexander Polishchuk, et al. Gluing stability conditions. Adv. Theor. Math. Phys., 14(2):563-608, 2010. DOI 10.4310/ATMP.2010.v14.n2.a6; zbl 1210.18011; MR2721656; arxiv 0902.0323.
  • 13. Brian Conrad. From normal crossings to strict normal crossings. http://math.stanford. edu/~conrad/249BW17Page/handouts/crossings.pdf.
  • 14. Ajneet Dhillon and Ivan Kobyzev. G-theory of root stacks and equivariant K-theory. Ann. K-Theory, 4(2):151-183, 2019. DOI 10.2140/akt.2019.4.151; zbl 07102031; MR3990783; arxiv 1510.06118.
  • 15. Barbara Fantechi, Etienne Mann, and Fabio Nironi. Smooth toric Deligne-Mumford stacks. J. Reine Angew. Math., 2010(648):201-244, 2010. DOI 10.1515/CRELLE.2010.084; zbl 1211.14009; MR2774310; arxiv 0708.1254.
  • 16. Dennis Gaitsgory. Ind-coherent sheaves. Mosc. Math. J., 13(3):399-528, 2013. zbl 1376.14023; MR3136100; arxiv 1105.4857.
  • 17. Dennis Gaitsgory and Nick Rozenblyum. A study in derived algebraic geometry, volume 1. American Mathematical Soc., 2017. zbl 1409.14003; MR3701352.
  • 18. Mark Gross and Bernd Siebert. Logarithmic Gromov-Witten invariants. J. Amer. Math. Soc., 26(2):451-510, 2013. DOI 10.1090/S0894-0347-2012-00757-7; zbl 1281.14044; MR3011419; arxiv 1102.4322.
  • 19. Mark Gross, Bernd Siebert, et al. Mirror symmetry via logarithmic degeneration data, I. J. Differential Geom., 72(2):169-338, 2006. DOI 10.4310/jdg/1143593211; zbl 1107.14029; MR2213573; arxiv math/0309070.
  • 20. Kei Hagihara. Structure theorem of Kummer étale K-group. K-Theory, 29(2):75-99, 2003. DOI 10.1023/B:KTHE.0000006867.98007.5c; zbl 1038.19002; MR2029756.
  • 21. Kei Hagihara. Structure theorem of Kummer étale K-group, II. Doc. Math., 21:1345-1396, 2016. zbl 1357.19001; MR3603925.
  • 22. Lars Hesselholt and Ib Madsen. On the K-theory of local fields. Ann. of Math. (2), 158(1):1-113, 2003. DOI 10.4007/annals.2003.158.1; zbl 1033.19002; MR1998478; arxiv math/9910186.
  • 23. Nicholas I. Howell. Motives of log schemes. 2017. https://scholarsbank.uoregon.edu/xmlui/ bitstream/handle/1794/22740/Howell\_oregon\_0171A\_11948.pdf?sequence=1.
  • 24. Marc Hoyois, Sarah Scherotzke, and Nicolò Sibilla. Higher traces, noncommutative motives, and the categorified Chern character. Adv. Math., 309:97-154, 2017. DOI 10.1016/j.aim.2017.01.008; zbl 1361.14014; MR3607274; arxiv 1511.03589.
  • 25. Akira Ishii, Kazushi Ueda, et al. The special McKay correspondence and exceptional collections. Tohoku Math. J. (2), 67(4):585-609, 2015. DOI 10.2748/tmj/1450798075; zbl 1335.14005; MR3436544; arxiv 1104.2381.
  • 26. Tetsushi Ito, Kazuya Kato, Chikara Nakayama, and Sampei Usui. On log motives. Tunis. J. Math., 2(4):733-789, 2020. DOI 10.2140/tunis.2020.2.733; zbl 07159321; MR4043075; arxiv 1712.09815.
  • 27. Jaya N.N. Iyer and Carlos T. Simpson. A relation between the parabolic Chern characters of the de Rham bundles. Math. Ann., 338(2):347-383, 2007. DOI 10.1007/s00208-006-0078-7; zbl 1132.14006; MR2302066; arxiv math/0603677.
  • 28. Kazuya Kato. Logarithmic structures of Fontaine-Illusie. In Algebraic analysis, geometry, and number theory (Baltimore, MD, 1988), pages 191-224. Johns Hopkins Univ. Press, Baltimore, MD, 1989. zbl 0776.14004; MR1463703.
  • 29. Henning Krause. Localization theory for triangulated categories. In Triangulated categories, volume 375 of London Math. Soc. Lecture Note Ser., 2010. zbl 1232.18012; MR2681709; arxiv 0806.1324.
  • 30. Amalendu Krishna and Bhamidi Sreedhar. Atiyah-Segal theorem for Deligne-Mumford stacks and applications. J. Algebr. Geom. 29(3):403-470, 2020. DOI 10.1090/jag/755; zbl 07205405; arxiv 1701.05047.
  • 31. Alexander Kuznetsov. Derived categories view on rationality problems. In Pardini R., Pirola G. (eds.): Rationality Problems in Algebraic Geometry, 67-104. Lecture Notes in Mathematics, vol. 2172. Springer, Cham, 2016. DOI 10.1007/978-3-319-46209-7_3; zbl 1368.14029; MR3618666; arxiv 1509.09115.
  • 32. Malte Leip. Thh of log rings. In L. Hesselholt and P. Scholze (eds.), Arbeitsgemeinschaft: Topological Cyclic Homology. Mathematisches Forschungsinstitut Oberwolfach, 2018.
  • 33. Joseph Lipman and Amnon Neeman. Quasi-perfect scheme-maps and boundedness of the twisted inverse image functor. Illinois J. Math., 51(1):209-236, 2007. zbl 1124.14003; MR2346195; arxiv math/0611760.
  • 34. Jacob Lurie. Higher Topos Theory, vol. 170 of Annals of Mathematics Studies. Princeton University Press, 2009. DOI 10.1515/9781400830558; zbl 1175.18001; MR2522659; arxiv math/0608040.
  • 35. Jacob Lurie. Higher Algebra. 2016. http://www.math.harvard.edu/~lurie/papers/HA. pdf.
  • 36. Wieslawa Nizioł. K-theory of log-schemes. I. Doc. Math., 13:505-551, 2008. https://elibm.org/article/10000109; zbl 1159.19003; MR2452875.
  • 37. Arthur Ogus. Lectures on logarithmic algebraic geometry, vol. 178 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, 2018. DOI 10.1017/9781316941614; zbl 06944229; MR3838359.
  • 38. Martin Olsson. Hochschild and cyclic homology of log schemes. Talk available at https: //www.youtube.com/watch?v=vPkSZm8DOYk.
  • 39. Martin Olsson. Logarithmic geometry and algebraic stacks. Ann. Sci. Ecole Norm. Sup. (4), 36(5):747-791, 2003. DOI 10.1016/j.ansens.2002.11.001; zbl 1069.14022; MR2032986.
  • 40. Martin Olsson. The logarithmic cotangent complex. Math. Ann., 333(4):859-931, 2005. DOI 10.1007/s00208-005-0707-6; zbl 1095.14016; MR2195148.
  • 41. Marco Robalo. K-theory and the bridge from motives to noncommutative motives. Adv. Math., 269:399-550, 2015. DOI 10.1016/j.aim.2014.10.011; zbl 1315.14030; MR3281141; arxiv 1306.3795.
  • 42. John Rognes, Steffen Sagave, and Christian Schlichtkrull. Localization sequences for logarithmic topological Hochschild homology. Math. Ann., 363(3-4):1349-1398, 2015. DOI 10.1007/s00208-015-1202-3; zbl 1329.14039; MR3412362; arxiv 1410.2170.
  • 43. Nick Rozenblyum. Filtered colimits of \(\infty \)-categories. Preprint, 2012. http://www.math. harvard.edu/~gaitsgde/GL/colimits.pdf.
  • 44. Francesco Sala and Olivier Schiffmann. The circle quantum group and the infinite root stack of a curve (with an appendix by Tatsuki Kuwagaki). Sel. Math., New Ser., 25(5):86 p., paper no. 77, 2019. DOI 10.1007/s00029-019-0521-8; zbl 07149828; MR4036503; arxiv 1711.07391.
  • 45. Matthew Satriano. Canonical artin stacks over log smooth schemes. Math. Z., 274(3-4):779-804, 2013. DOI 10.1007/s00209-012-1096-7; zbl 1354.14022; MR3078247; arxiv 0911.2059.
  • 46. Sarah Scherotzke, Nicolò Sibilla, and Mattia Talpo. On a logarithmic version of the derived McKay correspondence. Compos. Math. 154(12):2534-2585, 2018. DOI 10.1112/S0010437X18007431; zbl 1411.14022; MR3875460; arxiv 1612.08961.
  • 47. The Stacks Project Authors. Stacks project. 2018. http://stacks.math.columbia.edu.
  • 48. Goncalo Tabuada. Higher K-theory via universal invariants. Duke Math. J., 145(1):121-206, 2008. DOI 10.1215/00127094-2008-049; zbl 1166.18007; MR2451292; arxiv 0706.2420.
  • 49. Mattia Talpo. Moduli of parabolic sheaves on a polarized logarithmic scheme. Trans. Amer. Math. Soc., 369(5):3483-3545, 2017. DOI 10.1090/tran/6747; zbl 1401.14063; MR3605978; arxiv 1410.2212.
  • 50. Mattia Talpo. Parabolic sheaves with real weights as sheaves on the Kato-Nakayama space. Adv. Math., 336:97-148, 2018. DOI 10.1016/j.aim.2018.07.031; zbl 1403.14034; MR3846150; arxiv 1703.04777.
  • 51. Mattia Talpo and Angelo Vistoli. Infinite root stacks and quasi-coherent sheaves on logarithmic schemes. Proc. Lond. Math. Soc., 117(5):1187-1243, 2018. DOI 10.1112/plms.12109; zbl 06894764; MR3805055; arxiv 1410.1164.
  • 52. Mattia Talpo and Angelo Vistoli. The Kato-Nakayama space as a transcendental root stack. Int. Math. Res. Not., 2018(19):6145-6176, 2018. DOI 10.1093/imrn/rnx079; zbl 1409.14006; MR3867403; arxiv 1611.04041.

Affiliation

Scherotzke, Sarah
Université du Luxembourg, Maison du Nombre 6, Avenue de la Fonte, L-4364 Esch-sur-Alzette, Luxembourg
Sibilla, Nicolò
SMSAS, University of Kent. Canterbury, Kent CT2 7NF, UK and SISSA, Via Bonomea 265, 34136 Trieste (TS), Italy
Talpo, Mattia
Dipartimento di Matematica, Università di Pisa, Largo Bruno Pontecorvo 5, 56127 Pisa (PI), Italy

Downloads