Alberti, Frederic; Baake, Ellen

Solving the selection-recombination equation: ancestral lines and dual processes

Doc. Math. 26, 743-793 (2021)
DOI: 10.25537/dm.2021v26.743-793
Communicated by Roland Speicher

Summary

The deterministic selection-recombination equation describes the evolution of the genetic type composition of a population under selection and recombination in a law of large numbers regime. So far, an explicit solution has seemed out of reach; only in the special case of three sites with selection acting on one of them has an approximate solution been found, but without an obvious path to generalisation. We use both an analytical and a probabilistic, genealogical approach for the case of an \textit{arbitrary} number of neutral sites linked to one selected site. This leads to a recursive integral representation of the solution. Starting from a variant of the ancestral selection-recombination graph, we develop an efficient genealogical structure, which may, equivalently, be represented as a weighted partitioning process, a family of Yule processes with initiation and resetting, and a family of initiation processes. We prove them to be dual to the solution of the differential equation forward in time and thus obtain a stochastic representation of the deterministic solution, along with the Markov semigroup in closed form.

Mathematics Subject Classification

92D10, 92D15, 60J25, 60C05, 05C80

Keywords/Phrases

Moran model with selection and recombination, selection-recombination differential equation, ancestral selection-recombination graph, interactive particle system, duality, population genetics

References

  • 1. E. Akin The Geometry of Population Genetics, Springer, New York (1979), zbl 0437.92016, MR0559137.
  • 2. E. Akin, Cycling in simple genetic systems, J. Math. Biol. 13 (1982), 305-324, DOI 10.1007/BF00276066, zbl 0484.92009, MR0666338.
  • 3. E. Baake and M. Baake, An exactly solved model for recombination, mutation and selection, Can. J. Math. 55 (2003), 3-41; and erratum, Can. J. Math. 60 (2008), 264-265, DOI 10.4153/CJM-2003-001-0, DOI https://doi.org/10.4153/CJM-2008-012-1 (erratum), zbl 1056.92040, zbl 1231.92052 (erratum), MR1952324, arxiv math/0210422.
  • 4. E. Baake and M. Baake, Haldane linearisation done right: Solving the nonlinear recombination equation the easy way, Discr. Cont. Dyn. Syst. A 36 (2016), 6645-6656, DOI 10.3934/dcds.2016088, zbl 1353.92064, MR3567813, arxiv 1606.05175.
  • 5. E. Baake and M. Baake, Ancestral lines under recombination, in: Probabilistic Structures in Evolution, E. Baake and A. Wakolbinger (eds.), EMS Press, Berlin (2021), arxiv 2002.08658.
  • 6. E. Baake, M. Baake and M. Salamat, The general recombination equation in continuous time and its solution, Discr. Cont. Dyn. Syst. A 36 (2016), 63-95, DOI 10.3934/dcds.2016.36.63, zbl 1325.34064, MR3369214, arxiv 1409.1378.
  • 7. E. Baake, F. Cordero and S. Hummel, A probabilistic view on the deterministic mutation-selection equation: Dynamics, equilibria, and ancestry via individual lines of descent, J. Math. Biol. 77 (2018), 795-820, DOI 10.1007/s00285-018-1228-8, zbl 1408.92015, MR3850002, arxiv 1710.04573.
  • 8. E. Baake, M. Esser and S. Probst, Partitioning, duality, and linkage disequilibria in the Moran model with recombination, J. Math. Biol. 73 (2016), 161-197, DOI 10.1007/s00285-015-0936-6, zbl 1359.92080, MR3510499, arxiv 1502.05194.
  • 9. E. Baake, U. Lenz and A. Wakolbinger, The common ancestor type distribution of a \(\Lambda \)-Wright-Fisher process with selection and mutation, Electron. Commun. Probab. 21 (2016), 1-16, DOI 10.1214/16-ECP16, zbl 1346.60131, MR3548771, arxiv 1603.03605.
  • 10. F. B. Christiansen, Population Genetics of Multiple Loci, Wiley (1999), zbl 0941.92019.
  • 11. E. Baake and A. Wakolbinger, Lines of descent under selection, J. Stat. Phys. 172 (2018), 156-174, DOI 10.1007/s10955-017-1921-9, zbl 1396.92055, MR3810541, arxiv 1710.08209.
  • 12. A. Bhaskar and Y. S. Song, Closed-form asymptotic sampling distributions under the coalescent with recombination for an arbitrary number of loci, Adv. Appl. Probab. 44 (2012), 391-407, DOI 10.1239/aap/1339878717, zbl 1241.92054, MR2977401, arxiv 1107.4700.
  • 13. S. Bossert and P. Pfaffelhuber, The fixation probability and time for a doubly beneficial mutant, Stoch. Proc. Appl. 128 (2018), 4018-4050, DOI 10.1016/j.spa.2018.01.004, zbl 1404.92133, MR3906977, arxiv 1610.06613.
  • 14. R. Bürger, The Mathematical Theory of Selection, Recombination, and Mutation, Wiley, Chichester (2000), zbl 0959.92018, MR1885085.
  • 15. F. Cordero, The deterministic limit of the Moran model: a uniform central limit theorem, Markov Proc. Relat. Fields 23 (2017), 313-324, zbl 1379.92035, MR3701545, arxiv 1508.05231.
  • 16. F. Cordero, Common ancestor type distribution: A Moran model and its deterministic limit, Stoch. Proc. Appl. 127 (2017), 590-621, DOI 10.1016/j.spa.2016.06.019, zbl 1353.92066, MR3583764, arxiv 1508.06113.
  • 17. P. Donnelly and T. G. Kurtz, Genealogical processes for Fleming-Viot models with selection and recombination, Ann. Appl. Probab. 9 (1999), 1091-1148, DOI 10.1214/aoap/1029962866, zbl 0964.60075, MR1728556.
  • 18. R. Durrett, Probability Models for DNA Sequence Evolution, 2nd ed., Springer, New York (2008), DOI 10.1007/978-0-387-78168-6, zbl 1311.92007, MR2439767.
  • 19. M. Esser, Recombination Models Forward and Backward in Time, Dissertation, Bielefeld University (2016), urn:nbn:de:0070-pub-29102790.
  • 20. S. N. Ethier and T. G. Kurtz, Markov Processes: Characterization and Convergence, Wiley, Hoboken (1986), reprint (2005), zbl 1089.60005.
  • 21. W. J. Ewens and G. Thomson, Properties of equilibria in multi-locus genetic systems, Genetics 87 (1977), 807-819, MR0682090.
  • 22. W. Feller, An Introduction to Probability Theory and its Applications, Vol. I, 3rd ed., Wiley, New York (1968), zbl 0115.35308 (2nd ed.), MR0228020.
  • 23. P. Fearnhead, Ancestral processes for non-neutral models of complex diseases, Theor. Popul. Biol. 63 (2003), 115-130, DOI 10.1016/S0040-5809(02)00049-7, zbl 1104.92043.
  • 24. R. C. Griffiths and P. Marjoram, Ancestral inference from samples of DNA sequences with recombination, J. Comput. Biol. 3 (1996), 479-502.
  • 25. R. C. Griffiths and P. Marjoram, An ancestral recombination graph. in: Progress in Population Genetics and Human Evolution, P. Donnelly and S. Tavaré (eds.), Springer, New York (1997), pp. 257-270, zbl 0893.92020, MR1493031.
  • 26. A. Hastings, Stable cycling in discrete-time genetic models, Proc. Natl. Acad. Sci. USA 78 (1981), 7224-7225, DOI 10.1073/pnas.78.11.7224, zbl 0466.92010, MR0635753.
  • 27. J. Hofbauer, The selection-mutation equation, J. Math. Biol. 23 (1985), 41-53, DOI 10.1007/BF00276557, zbl 0582.92017, MR0821683.
  • 28. R. R. Hudson, Properties of a neutral allele model with intragenic recombination, Theor. Popul. Biol. 23 (1983), 183-201, DOI 10.1016/0040-5809(83)90013-8, zbl 0505.62090.
  • 29. P. A. Jenkins, P. Fearnhead, and Y. S. Song, Tractable diffusion and coalescent processes for weakly correlated loci, Electron. J. Probab. 20 (2015), 1-26, DOI 10.1214/EJP.v20-3564, zbl 1332.92041, MR3354618, arxiv 1405.6863.
  • 30. H. S. Jennings, The numerical results of diverse systems of breeding, with respect to two pairs of characters, linked or independent, with special relation to the effects of linkage, Genetics 2 (1917), 97-154.
  • 31. S. Karlin, General two-locus selection models: Some objectives, results and interpretations, Theor. Pop. Biol. 7 (1975), 364-398, DOI 10.1016/0040-5809(75)90025-8, zbl 0315.92006, MR0384203.
  • 32. M. Kimura, A model of a genetic system which leads to closer linkage by natural selection, Evolution 10 (1956), 278-287.
  • 33. V. Kirzhner and Y. Lyubich, Multilocus dynamics under haploid selection, J. Math. Biol. 35 (1997), 391-408, DOI 10.1007/s002850050058, zbl 0866.92014, MR1478590.
  • 34. S. M. Krone and C. Neuhauser, Ancestral processes with selection, Theor. Popul. Biol. 51 (1997), 210-237, DOI 10.1006/tpbi.1997.1299, zbl 0910.92024.
  • 35. S. Jansen and N. Kurt, On the notion(s) of duality for Markov processes, Probab. Surveys 11 (2014), 59-120, DOI 10.1214/12-PS206, zbl 1292.60077, MR3201861, arxiv 1210.7193.
  • 36. A. Lambert, V. Miró Pina, and E. Schertzer, Chromosome painting: How recombination mixes ancestral colors, Ann. Appl. Probab. 31 (2021), 826-864, MR4254497, arxiv 1807.09116.
  • 37. S. Lessard and A. R. Kermany, Fixation probability in a two-locus model by the ancestral recombination-selection graph, Genetics 190 (2012), 691-707, DOI 10.1016/j.tpb.2012.05.002, zbl 1322.92034.
  • 38. T. M. Liggett, Continuous Time Markov Processes: An Introduction, Amer. Math. Soc., Providence, RI (2010), zbl 1205.60002, MR2574430.
  • 39. Y. I. Lyubich, Mathematical Structures in Population Genetics, Springer, Berlin (1992), zbl 0747.92019, MR1224676.
  • 40. D. McHale and G. A. Ringwood, Haldane linearisation of baric algebras, J. London Math. Soc. 28 (1983),17-26, DOI 10.1112/jlms/s2-28.1.17, zbl 0515.17010, MR0703460.
  • 41. M. Möhle, The concept of duality and applications to Markov processes arising in neutral population genetics models, Bernoulli 5 (1999), 761-777, DOI 10.2307/3318443, zbl 0942.92020, MR1715438.
  • 42. M. Möhle, Duality and cones of Markov processes and their semigroups, Markov Process. Relat. Fields 19 (2013), 149-162, zbl 1298.60079, MR3088428.
  • 43. T. Nagylaki, J. Hofbauer, and P. Brunovský, Convergence of multilocus systems under weak epistasis or weak selection, J. Math. Biol. 38 (1999), 103-133, DOI 10.1007/s002850050143, zbl 0981.92019, MR1669267.
  • 44. J. Maynard Smith and J. Haigh, The hitch-hiking effect of a favourable gene, Gen. Res. 23 (1974), 23-35.
  • 45. J. R. Norris, Markov Chains, Cambridge University Press, New York (1997), reprint (2005), DOI 10.1017/CBO9780511810633 (1998 ed.), zbl 0938.60058 (1998 ed.), MR1600720 (1998 ed.).
  • 46. M. Pontz, J. Hofbauer and R. Bürger, Evolutionary dynamics in the two-locus two-allele model with weak selection, J. Math. Biol. 76 (2018), 151-203, DOI 10.1007/s00285-017-1140-7, zbl 1392.92063, MR3742785.
  • 47. R. B. Robbins, Some applications of mathematics to breeding problems III, Genetics 3 (1918), 375-389.
  • 48. H. A. Simon, On a class of skew distribution functions, Biometrika 43 (1955), 423-440, DOI 10.1093/biomet/42.3-4.425, zbl 0066.11201, MR0073085.
  • 49. W. Stephan, Y. S. Song and C. H. Langley, The hitchhiking effect on linkage disequilibrium between linked neutral loci, Genetics 172 (2006), 2647-2663.
  • 50. A. Stuart and K. J. Ord, Kendall's Advanced Theory of Statistics, Vol. 1 (Distribution Theory), 5th ed., Wiley, Chichester (1994), MR1280717.
  • 51. G. U. Yule, A mathematical theory of evolution based on the conclusions of Dr. J. C. Willis, F.R.S., Philos. Trans. Roy. Soc. London B 13 (1924), 21-87.

Affiliation

Alberti, Frederic
Faculty of Mathematics, Bielefeld University, Postbox 100131, 33501 Bielefeld, Germany
Baake, Ellen
Faculty of Technology, Bielefeld University, PO Box 100 131, D-33501 Bielefeld (Germany)

Downloads