On the James and Hilton-Milnor splittings, and the metastable EHP sequence
Doc. Math. 26, 1423-1464 (2021)
DOI: 10.25537/dm.2021v26.1423-1464
Communicated by Mike Hill
Summary
This note provides modern proofs of some classical results in algebraic topology, such as the James Splitting, the Hilton-Milnor Splitting, and the metastable EHP sequence. We prove fundamental splitting results \[\Sigma \Omega \Sigma X \simeq \Sigma X \vee (X\wedge \Sigma\Omega \Sigma X) \] and \[ \Omega(X \vee Y) \simeq \Omega X\times \Omega Y\times \Omega \Sigma(\Omega X \wedge \Omega Y) \] in the maximal generality of an \(\infty \)-category with finite limits and pushouts in which pushouts squares remain pushouts after basechange along an arbitrary morphism (i.e., Mather's Second Cube Lemma holds). For connected objects, these imply the classical James and Hilton-Milnor splittings. Moreover, working in this generality shows that the James and Hilton-Milnor splittings hold in many new contexts, for example in: elementary \(\infty \)-topoi, profinite spaces, and motivic spaces over arbitrary base schemes. The splitting results in this last context extend Wickelgren and Williams' splitting result for motivic spaces over a perfect field [\textit{K. Wickelgren} and \textit{B. Williams}, Geom. Topol. 23, No. 4, 1691--1777 (2019; Zbl 1428.14032)]. We also give two proofs of the metastable EHP sequence in the setting of \(\infty \)-topoi: the first is a new, non-computational proof that only utilizes basic connectedness estimates involving the James filtration and the Blakers-Massey Theorem, while the second reduces to the classical computational proof.
Mathematics Subject Classification
55P35, 55P40, 55P99, 55Q20, 18N60, 14F42
Keywords/Phrases
infinity categories
References
1. Anderson, D. W., Chain functors and homology theories. In: Springer, Berlin, Symposium on Algebraic Topology (1971); zbl 0229.55005; MR0339132.
2. Joyal, André; Finster, Eric; Biedermann, Georg; Anel, Mathieu, A generalized Blakers-Massey theorem, J. Topol., 13, 4, 1521-1553 (2020); DOI 10.1112/topo.12163; zbl 1456.18017; MR4186137; arxiv 1703.09050.
3. Elmanto, Elden; Antieau, Benjamin, A primer for unstable motivic homotopy theory. In: Proc. Sympos. Pure Math., 95, Amer. Math. Soc., Providence, RI, Surveys on recent developments in algebraic geometry; zbl 1439.14076; MR3727503; arxiv 1605.00929.
4. Williams, Ben; Wickelgren, Kirsten; Asok, Aravind, The simplicial suspension sequence in \(\mathbf{A}^1\)-homotopy, Geom. Topol., 21, 4, 2093-2160 (2017); DOI 10.2140/gt.2017.21.2093; zbl 1365.14027; MR3654105; arxiv 1507.05152.
5. Ayoub, Joseph, Un contre-exemple à la conjecture de \(\mathbf A^1\)-connexité de F. Morel, C. R. Math. Acad. Sci. Paris, 342, 12, 943-948 (2006); DOI 10.1016/j.crma.2006.04.017; zbl 1103.14009; MR2235615.
7. Brunerie, Guillaume, The James construction and \(\pi_4(\text S^3)\) in homotopy type theory, J. Automat. Reason., 63, 2, 255-284 (2019); DOI 10.1007/s10817-018-9468-2; zbl 07096715; MR3979632; arxiv 1710.10307.
8. Taylor, L. R.; May, J. P.; Cohen, F. R., Splitting of certain spaces \(CX\), Math. Proc. Cambridge Philos. Soc., 84, 3, 465-496 (1978); DOI 10.1017/S0305004100055298; zbl 0408.55006; MR503007.
9. Ganea, T., A generalization of the homology and homotopy suspension, Comment. Math. Helv., 39, 295-322 (1965); DOI 10.1007/BF02566956; zbl 0142.40702; MR179791.
10. Ganea, T., On the homotopy suspension, Comment. Math. Helv., 43, 225-234 (1968); DOI 10.1007/BF02564393; zbl 0165.56603; MR229239.
11. Gray, Brayton, A note on the Hilton-Milnor theorem, Topology, 10, 199-201 (1971); DOI 10.1016/0040-9383(71)90004-8; zbl 0221.55012; MR281202.
12. Grbić, Jelena, Homotopy theory and the complement of a coordinate subspace arrangement. In: Contemp. Math., 460, Amer. Math. Soc., Providence, RI, Toric topology; DOI 10.1090/conm/460/09014; zbl 1192.55009; MR2428352.
14. Hill, Michael Anthony, On the algebras over equivariant little disks, Preprint; arxiv 1709.02005.
15. Hopkins, Michael, Course notes for Spectra and stable homotopy theory taken by Akhil Mathew, http://math.uchicago.edu/~amathew/256y.pdf.
16. Hilton, P. J., On the homotopy groups of unions of spaces, Comment. Math. Helv., 29, 59-92 (1955); DOI 10.1007/BF02564271; zbl 0064.17203; MR69492.
17. Hilton, P. J., On the homotopy groups of the union of spheres, J. London Math. Soc., 30, 154-172 (1955); DOI 10.1112/jlms/s1-30.2.154; zbl 0064.17301; MR68218.
18. Hoyois, Marc, The six operations in equivariant motivic homotopy theory, Adv. Math., 305, 197-279 (2017); DOI 10.1016/j.aim.2016.09.031; zbl 1400.14065; MR3570135; arxiv 1509.02145.
19. James, I. M., Reduced product spaces, Ann. of Math. (2), 62, 170-197 (1955); DOI 10.2307/2007107; zbl 0064.41505; MR73181.
20. James, I. M., On the suspension triad, Ann. of Math. (2), 63, 191-247 (1956); DOI 10.2307/1969607; zbl 0071.17002; MR77922.
21. James, I. M., The suspension triad of a sphere, Ann. of Math. (2), 63, 407-429 (1956); DOI 10.2307/1970011; zbl 0071.17101; MR79263.
22. Lurie, Jacob, Higher topos theory, Annals of Mathematics Studies, 170 (2009), Princeton University Press, Princeton, NJ; DOI 10.1515/9781400830558; zbl 1175.18001; MR2522659; arxiv math/0608040.
26. Mather, Michael, Pull-backs in homotopy theory, Canadian J. Math., 28, 2, 225-263 (1976); DOI 10.4153/CJM-1976-029-0; zbl 0351.55005; MR402694.
27. May, J. P., A concise course in algebraic topology, Chicago Lectures in Mathematics (1999), University of Chicago Press, Chicago, IL; zbl 0923.55001; MR1702278.
28. Milnor, J. W., Algebraic topology - a student's guide, London Mathematical Society Lecture Note Series, 4. On the construction \(FK, 118-136 (1972)\), Cambridge University Press, London-New York; zbl 0234.55002; MR0445484.
29. Morel, Fabien, \( \mathbf A^1\)-algebraic topology over a field, Lecture Notes in Mathematics, 2052 (2012), Springer, Heidelberg; DOI 10.1007/978-3-642-29514-0; zbl 1263.14003; MR2934577.
30. Voevodsky, Vladimir; Morel, Fabien, \( \mathbf{A}^1\)-homotopy theory of schemes, Inst. Hautes Études Sci. Publ. Math., 90, 45-143 (1999); DOI 10.1007/BF02698831; zbl 0983.14007; MR1813224.
31. Nardin, Denis, Answer to Math Overflow Question 333239: Describing fiber products in stable \(\infty \)-categories, https://mathoverflow.net/questions/333239/.
32. Strunk, Florian; Raptis, Georgios, Model topoi and motivic homotopy theory, Doc. Math., 23, 1757-1797 (2018); DOI 10.25537/dm.2018v23.1757-1797; zbl 1423.55036; MR3890956; arxiv 1704.08467; https://www.elibm.org/article/10011889.
33. Rasekh, Nima, A theory of elementary higher toposes, Preprint; arxiv 1805.03805.
34. Segal, Graeme, Categories and cohomology theories, Topology, 13, 293-312 (1974); DOI 10.1016/0040-9383(74)90022-6; zbl 0284.55016; MR353298.
35. Segal, Graeme, Classifying spaces and spectral sequences, Inst. Hautes Études Sci. Publ. Math., 34, 105-112 (1968); DOI 10.1007/BF02684591; zbl 0199.26404; MR232393.
36. Snaith, V. P., A stable decomposition of \(\Omega^n\text S^nX\), J. London Math. Soc. (2), 7, 577-583 (1974); DOI 10.1112/jlms/s2-7.4.577; zbl 0275.55019; MR339155.
38. The Stacks Project Authors, Stacks Project, http://stacks.math.columbia.edu.
39. Strom, Jeffrey, Modern classical homotopy theory, Graduate Studies in Mathematics, 127 (2011), American Mathematical Society, Providence, RI; DOI 10.1090/gsm/127; zbl 1231.55001; MR2839990.
40. Toda, Hirosi, Composition methods in homotopy groups of spheres, Annals of Mathematics Studies, 49 (1962), Princeton University Press, Princeton, N.J; zbl 0101.40703; MR0143217.
41. tom Dieck, Tammo, Algebraic topology, EMS Textbooks in Mathematics (2008), European Mathematical Society (EMS), Zürich; DOI 10.4171/048; zbl 1156.55001; MR2456045.
42. Wickelgren, Kirsten, Desuspensions of \(\text S^1\wedge(\mathbf{P}^1_{\mathbf{Q}} \smallsetminus \{0,1,\infty\})\), Internat. J. Math., 27, 7, 1640010, 18 pp. (2016); DOI 10.1142/S0129167X16400103; zbl 1350.55014; MR3521594; arxiv 1502.07811.
43. Williams, Ben; Wickelgren, Kirsten, The simplicial EHP sequence in \(\mathbf A^1\)-algebraic topology, Geom. Topol., 23, 4, 1691-1777 (2019); DOI 10.2140/gt.2019.23.1691; zbl 1428.14032; MR3981318; arxiv 1411.5306.
44. Whitehead, George W., Elements of homotopy theory, Graduate Texts in Mathematics, 61 (1978), Springer, New York-Berlin; zbl 0406.55001; MR516508.
45. Wilson, Dylan, James Construction, Notes available at https://www.math.uchicago.edu/~dwilson/pretalbot2017/james-construction.pdf.
Affiliation
Devalapurkar, Sanath
Harvard University, 1 Oxford Street, Cambridge, MA 02138, USA
Haine, Peter
Department of Mathematics, University of California, Berkeley, 753 Evans Hall, Berkeley, CA 94720, USA