Dubouloz, Adrien; Kunyavskiĭ, Boris; Regeta, Andriy

Bracket width of simple Lie algebras

Doc. Math. 26, 1601-1627 (2021)
DOI: 10.25537/dm.2021v26.1601-1627
Communicated by Nikita Karpenko

Summary

The notion of commutator width of a group, defined as the smallest number of commutators needed to represent each element of the derived group as their product, has been extensively studied over the past decades. In particular, in [Math. Ann. 294, No. 2, 235--265 (1992; Zbl 0894.55006)] \textit{J. Barge} and \textit{E. Ghys} discovered the first example of a simple group of commutator width greater than one among groups of diffeomorphisms of smooth manifolds. \par We consider a parallel notion of bracket width of a Lie algebra and present the first examples of simple Lie algebras of bracket width greater than one. They are found among the algebras of algebraic vector fields on smooth affine varieties.

Mathematics Subject Classification

14H52, 17B66

Keywords/Phrases

simple Lie algebras, Lie algebras of algebraic, symplectic and Hamiltonian vector fields, smooth affine curves, Danielewski surfaces, locally nilpotent derivations

References

  • [AFKKZ13]. I. Arzhantsev, H. Flenner, S. Kaliman, F. Kutzschebauch, M. Zaidenberg, Flexible varieties and automorphism groups, Duke Math. J. 162 (2013), 767-823, DOI 10.1215/00127094-2080132, zbl 1295.14057, MR3039680, arxiv 1011.5375.
  • [AZK12]. I. V. Arzhantsev, M. G. Zaĭdenberg, K. G. Kuyumzhiyan, Flag varieties, toric varieties, and suspensions: Three instances of infinite transitivity, Mat. Sb. 203 (2012), no. 7, 3-30; English transl. Sb. Math. 203 (2012), 923-949, DOI 10.1070/SM2012v203n07ABEH004248, zbl 1311.14059, MR2986429, arxiv 1003.3164.
  • [BG92]. J. Barge, E. Ghys, Cocycles d'Euler et de Maslov, Math. Ann. 294 (1992), 235-265, DOI 10.1007/BF01934324, zbl 0894.55006, MR1183404.
  • [Bav17]. V. V. Bavula, The groups of automorphisms of the Lie algebras of polynomial vector fields with zero or constant divergence, Comm. Algebra 45 (2017), 1114-1133, DOI 10.1080/00927872.2016.1175596, zbl 1418.17038, MR3573363, arxiv 1310.4741.
  • [BN11]. G. M. Bergman, N. Nahlus, Homomorphisms on infinite direct product algebras, especially Lie algebras, J. Algebra 333 (2011), 67-104, DOI 10.1016/j.jalgebra.2011.02.035, zbl 1276.17002, MR2785938, arxiv 0910.5181.
  • [BF18]. Y. Billig, V. Futorny, Lie algebras of vector fields on smooth affine varieties, Comm. Algebra 46 (2018), 3413-3429, DOI 10.1080/00927872.2017.1412456, zbl 1434.17029, MR3789004, arxiv 1705.05900.
  • [Con14]. B. Conrad, Reductive group schemes, in: ``Autour des schémas en groupes'', vol. I, Panor. Synthèses, 42/43, Soc. Math. France, Paris, 2014, pp. 93-444, zbl 1349.14151, MR3362641.
  • [Dai04]. D. Daigle, Locally nilpotent derivations and Danielewski surfaces, Osaka J. Math. 41 (2004), 37-80, zbl 1078.13010, MR2040063.
  • [Dan89]. W. Danielewski, On a cancellation problem and automorphism groups of affine algebraic varieties, Warsaw, preprint, unpublished, 1989.
  • [GKP18]. N. L. Gordeev, B. È. Kunyavskii, E. B. Plotkin, Geometry of word equations in simple algebraic groups over special fields, Uspekhi Mat. Nauk 73 (2018), no. 5, 3-52; English transl. Russian Math. Surveys 73 (2018), 753-796, DOI 10.1070/RM9838, zbl 1442.20028, MR3859398, arxiv 1808.02303.
  • [Gra78]. J. Grabowski, Isomorphisms and ideals of the Lie algebras of vector fields, Invent. Math. 50 (1978/79), 13-33, DOI 10.1007/BF01406466, zbl 0378.57010, MR0516602.
  • [Gro66]. A. Grothendieck, On the de Rham cohomology of algebraic varieties, Inst. Hautes Études Sci. Publ. Math. 29 (1966), 95-103, DOI 10.1007/BF02684807, zbl 0145.17602, MR0199194.
  • [HSVZ13]. R. Hazrat, A. Stepanov, N. Vavilov, Z. Zhang, Commutator width in Chevalley groups, Note Mat. 33 (2013), 139-170, zbl 1294.20059, MR3071318, arxiv 1206.2128.
  • [Jor86]. D. A. Jordan, On the ideals of a Lie algebra of derivations, J. London Math. Soc. 33 (1986), 33-39, DOI 10.1112/jlms/s2-33.1.33, zbl 0591.17007, MR0829385.
  • [Kac68]. V. G. Kac, Simple irreducible graded Lie algebras of finite growth, Izv. Akad. Nauk SSSR Ser. Mat. 32 (1968), 1323-1367; English transl. Math. USSR-Izv. 2 (1968), 1271-1311, DOI 10.1070/IM1968v002n06ABEH000729, zbl 0222.17007, MR0259961.
  • [KK10]. S. Kaliman, F. Kutzschebauch, Algebraic volume density property of affine algebraic manifolds, Invent. Math. 181 (2010), 605-647, DOI 10.1007/s00222-010-0255-x, zbl 1211.14067, MR2660454, arxiv 0908.2416.
  • [KK11]. S. Kaliman, F. Kutzschebauch, On the present state of the Andersén-Lempert theory, in: ``Affine Algebraic Geometry'', CRM Proc. Lecture Notes, 54, Amer. Math. Soc., Providence, RI, 2011, pp. 85-122, zbl 1266.32028, MR2768636, arxiv 1003.3434.
  • [KK15]. S. Kaliman, F. Kutzschebauch, On the density and the volume density property, in: ``Complex Analysis and Geometry'' (F. Bracci, J. Byun, H. Gaussier, K. Hirachi, K. T. Kim, N. Shcherbina, eds.), Springer Proc. Math. Stat., 144 (2015), Springer, Tokyo, pp. 175-186, DOI 10.1007/978-4-431-55744-9_12, zbl 1326.32037, MR3446755.
  • [KK16]. S. Kaliman, F. Kutzschebauch, On algebraic volume density property, Transform. Groups 21 (2016), 451-478, DOI 10.1007/s00031-015-9360-7, zbl 1397.32006, MR3492044, arxiv 1201.4769.
  • [Kol20]. J. Kollár, Pell surfaces, Acta Math. Hungar. 160 (2020), 478-518, DOI 10.1007/s10474-019-01008-2, zbl 07200111, MR4075415, arxiv 1906.08818.
  • [KR17]. H. Kraft, A. Regeta, Automorphisms of the Lie algebra of vector fields on affine \(n\)-space, J. Eur. Math. Soc 19 (2017), 1577-1588, DOI 10.4171/JEMS/700, zbl 1418.17051, MR3635361, arxiv 1402.5012.
  • [KL13]. F. Kutzschebauch, M. Leuenberger, The Lie algebra generated by locally nilpotent derivations on a Danielewski surface, Ann. Sc. Norm. Super. Pisa 15 (2016), 183-207, DOI 10.2422/2036-2145.201307_001, zbl 1351.32033, MR3495426, arxiv 1311.1075.
  • [LT13]. F. Lalonde, A. Teleman, The \(g\)-areas and the commutator length, Internat. J. Math. 24 (2013), no. 7, 1350057, 13 pp., DOI 10.1142/S0129167X13500572, zbl 1276.53082, MR3084738, arxiv 1404.1004.
  • [LR21]. M. Leuenberger, A. Regeta, Vector fields and automorphism groups of Danielewski surfaces, Intern. Math. Res. Notices IMRN, DOI 10.1093/imrn/rnaa189.
  • [LOST10]. M. W. Liebeck, E. A. O'Brien, A. Shalev, P. H. Tiep, The Ore conjecture, J. Europ. Math. Soc. 12 (2010), 939-1008, DOI 10.4171/JEMS/220, zbl 1205.20011, MR2654085.
  • [Pop21]. V. L. Popov, On algebraic group varieties, preprint, 2021, arxiv 2102.08032.
  • [Rom16]. V. A. Roman'kov, The commutator width of some relatively free Lie algebras and nilpotent groups, Sibirsk. Mat. Zh. 57 (2016), 866-888; English transl. Sib. Math. J. 57 (2016), 679-695, DOI 10.1134/S0037446616040108, zbl 1378.17013, MR3601334.
  • [Rud69]. A. N. Rudakov, Groups of automorphisms of infinite-dimensional simple Lie algebras, Izv. Akad. SSSR Ser. Mat. 33 (1969), 748-764; English transl. Math. USSR Izv. 3 (1969), 707-722, DOI 10.1070/IM1969v003n04ABEH000798, zbl 0222.17014, MR0252462.
  • [Sch14]. M. Schlichenmaier, Krichever-Novikov Type Algebras. Theory and Applications, De Gruyter Stud. Math., 53, De Gruyter, Berlin, 2014, DOI 10.1515/9783110279641, zbl 1347.17001, MR3237422.
  • [Sha81]. I. R. Shafarevich, On some infinite-dimensional groups, II, Izv. Akad. Nauk SSSR Ser. Mat. 45 (1981), 214-226; English transl. Math. USSR Izv. 18 (1982), 185-194, DOI 10.1070/IM1982v018n01ABEH001379, zbl 0491.14025, MR0607583.
  • [Sie96]. T. Siebert, Lie algebras of derivations and affine algebraic geometry over fields of characteristic \(0\), Math. Ann. 305 (1996), 271-286, DOI 10.1007/BF01444221, zbl 0858.17018, MR1391215.
  • [Var01]. D. Varolin, The density property for complex manifolds and geometric structures, J. Geom. Anal. 11 (2001), 135-160, DOI 10.1007/BF02921959, zbl 0994.32019, MR1829353.

Affiliation

Dubouloz, Adrien
IMB UMR5584, CNRS Université Bourgogne Franche-Comté, F-21000 Dijon, France
Kunyavskiĭ, Boris
Department of Mathematics, Bar-Ilan University, 5290002 Ramat Gan, Israel
Regeta, Andriy
Institut für Mathematik, Friedrich-Schiller-Universität Jena, Jena 07737, Germany

Downloads