Ferrari, Eugenia; Tirabassi, Sofia; Vodrup, Magnus; Bergström, Jonas

On the Brauer group of bielliptic surfaces (with an appendix by Jonas Bergström and Sofia Tirabassi)

Doc. Math. 27, 383-425 (2022)
DOI: 10.25537/dm.2022v27.383-425
Communicated by Gavril Farkas

Summary

We provide explicit generators of the torsion of the second cohomology of bielliptic surfaces, and we use this to study the pullback map between the Brauer group of a bielliptic surface and that of its canonical cover.

Mathematics Subject Classification

14F22, 14J27

Keywords/Phrases

bielliptic surfaces, Brauer group, canonical covers

References

  • [Bad01]. L. Badescu. Algebraic surfaces. Springer, New York, 2001, zbl 0965.14001, MR1805816.
  • [BDF10]. G. Bagnera and M. de Franchis. Le nombre \(\rho\) de Picard pour les surfaces hyperelliptiques. Rend. Circ. Mat. Palermo, 10, 1910, JFM 41.0520.03.
  • [Bea96]. A. Beauville. Complex algebraic surfaces. Cambridge University Press, 1996, zbl 0849.14014, MR1406314.
  • [Bea09]. A. Beauville. On the Brauer group of Enriques surfaces. Math. Res. Lett. 16(6):927-934, 2009, DOI 10.4310/MRL.2009.v16.n6.a1, zbl 1195.14053, MR2576681, arxiv 0902.3721.
  • [BHPvdV15]. W. Barth, K. Hulek, C. Peters, and A. van de Ven. Compact complex surfaces. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics. Springer, Berlin, Heidelberg, 2004, zbl 1036.14016, MR2030225.
  • [BL13]. C. Birkenhake and H. Lange. Complex abelian varieties, Grundlehren der Mathematischen Wissenschaften, 302. Springer, Berlin, 2004, zbl 1056.14063, MR2030225.
  • [BM77]. E. Bombieri and D. Mumford. Enriques' classification of surfaces in char. \(p\). II. In Complex analysis and algebraic geometry, Collect. pap. dedic. K. Kodaira, 23-42, 1977, zbl 0348.14021, MR0491719.
  • [Cox11]. D. A. Cox. Primes of the form \(x^2+ ny^2\): Fermat, class field theory, and complex multiplication, Pure and Applied Mathematics. Wiley \& Sons, 2013, zbl 1275.11002, MR3236783.
  • [dJ]. J. de Jong. A result of Gabber, 2005, https://www.math.columbia.edu/~dejong/papers/2-gabber.pdf.
  • [Gau66]. C. F. Gauss. Disquisitiones arithmeticae. Yale University Press, 1966, zbl 0136.32301, MR0197380.
  • [Gro61]. A. Grothendieck. Éléments de géométrie algébrique : II. Étude globale élémentaire de quelques classes de morphismes. Publications Mathématiques de l'IHÉS 8:5-222, 1961, DOI 10.1007/BF02684778, zbl 0118.36206, MR0217084.
  • [Gro67]. A. Grothendieck. Éléments de géométrie algébrique : IV. Étude locale des schémas et des morphismes de schémas, quatrième partie. Publications Mathématiques de l'IHÉS 32:5-361, 1967, zbl 0153.22301, MR0238860.
  • [HLT19]. K. Honigs, L. Lombardi, and S. Tirabassi. Derived equivalences of canonical covers of hyperelliptic and Enriques surfaces in positive characteristic. Math. Z. 295(1-2):727-749, 2020, DOI 10.1007/s00209-019-02362-1, zbl 1440.14087, MR4100024, arxiv 1606.02094.
  • [Iit70]. S. Iitaka. Deformations of compact complex surfaces. II J. Math. Soc. Japan 22(2):247-261, 1970, DOI 10.2969/jmsj/02220247, zbl 0188.53401, MR0261639.
  • [Mar18]. S. Marseglia. Computing the ideal class monoid of an order. J. Lond. Math. Soc., II. Ser. 101(3):984-1007, 2020, DOI 10.1112/jlms.12294, zbl 1462.11106, MR4111932, arxiv 1805.09671.
  • [Mum70]. D. Mumford. Abelian varieties, 1970. Published for the Tata Institute of Fundamental Research, Bombay, by Oxford University Press, London, 1970, zbl 0223.14022, MR0282985.
  • [Nue]. H. Nuer. Stable sheaves on bielliptic surfaces: from the classical to the modern. Preprint, 2021, arxiv math/2107.13370.
  • [Ser90a]. F. Serrano. Divisors of bielliptic surfaces and embeddings in \(\mathbf P^4\). Math. Z. 203(3):527-533, 1990, DOI 10.1007/BF02570754, zbl 0722.14023, MR1038716.
  • [Ser90b]. F. Serrano. Multiple fibres of a morphism. Comment. Math. Helv. 65(2):287-298, 1990, DOI 10.1007/BF02566608, zbl 0714.14008, MR1057245.
  • [Ser91]. F. Serrano. The Picard group of a quasi-bundle. Manuscripta Math. 73(1):63-82, 1991, DOI 10.1007/BF02567629, zbl 0758.14006, MR1124311.
  • [Sil09]. J. H. Silverman. The arithmetic of elliptic curves, Graduate Texts in Mathematics,106. Springer, 2009, DOI 10.1007/978-0-387-09494-6, zbl 1194.11005, MR2514094.
  • [Sil13]. J. H. Silverman. Advanced topics in the arithmetic of elliptic curves, Graduate Texts in Mathematics, 151. Springer, New York, 1994, zbl 0911.14015, MR1312368.
  • [{Sta}19]. The Stacks project authors. The Stacks project, 2019, https://stacks.math.columbia.edu.
  • [Suw69]. T. Suwa. On hyperelliptic surfaces. J. Fac. Sci. Univ. Tokyo Sect. I 16:469-476, 1970, zbl 0256.14014, MR0267133.
  • [Ume75]. H. Umemura. Stable vector bundles with numerically trivial Chern classes over a hyperelliptic surface. Nagoya Math. J. 59:107-134, 1975, DOI 10.1017/S0027763000016834, zbl 0337.14025, MR0389906.

Affiliation

Ferrari, Eugenia
Department of Mathematics, University of Bergen, Allégaten 41, Bergen, Norway
Tirabassi, Sofia
Department of Mathematics, Stockholm University, Kraftriket hus 6, Stockholm, Sweden
Vodrup, Magnus
Department of Mathematics, University of Bergen, Allégaten 41, Bergen, Norway
Bergström, Jonas
Department of Mathematics, Stockholm University, Kraftriket hus 6, Stockholm, Sweden

Downloads