Coons, Michael; Evans, James; Mañibo, Neil

Spectral theory of regular sequences

Doc. Math. 27, 629-653 (2022)
DOI: 10.25537/dm.2022v27.629-653
Communicated by Roland Speicher

Summary

Regular sequences are natural generalisations of fixed points of constant-length substitutions on finite alphabets, that is, of automatic sequences. Using the harmonic analysis of measures associated with substitutions as motivation, we study the limiting asymptotics of regular sequences by constructing a systematic measure-theoretic framework surrounding them. The constructed measures are generalisations of mass distributions supported on attractors of iterated function systems.

Mathematics Subject Classification

11B85, 42A38, 28A80

Keywords/Phrases

regular sequences, aperiodic order, symbolic dynamics, continuous measures, dilation equations

References

  • 1. Boris Adamczewski and Yann Bugeaud, On the complexity of algebraic numbers. I. Expansions in integer bases, Ann. of Math. (2) 165 (2007), no. 2, 547-565, DOI 10.4007/annals.2007.165.547, zbl 1195.11094, MR2299740, arxiv math/0511674.
  • 2. Jean-Paul Allouche and Jeffrey Shallit, The ring of \(k\)-regular sequences, Theoret. Comput. Sci. 98 (1992), no. 2, 163-197, DOI 10.1016/0304-3975(92)90001-V, zbl 0774.68072, MR1166363.
  • 3. Michael Baake and Michael Coons, A natural probability measure derived from Stern's diatomic sequence, Acta Arith. 183 (2018), no. 1, 87-99, DOI 10.4064/aa170709-22-1, zbl 1411.11029, MR3774394, arxiv 1706.00187.
  • 4. Michael Baake, Franz Gähler, and Neil Mañibo, Renormalisation of pair correlation measures for primitive inflation rules and absence of absolutely continuous diffraction, Commun. Math. Phys. 370 (2019), no. 2, 591-635, DOI 10.1007/s00220-019-03500-w, zbl 1433.37014, MR3994581, arxiv 1805.09650.
  • 5. Michael Baake, Philipp Gohlke, Marc Kesseböhmer, and Tanja Schindler, Scaling properties of the Thue-Morse measure, Discr. Cont. Dynam. Syst. A 39 (2019) no. 7, 4157-4185, DOI 10.3934/dcds.2019168, zbl 1414.37019, MR3960501, arxiv 1810.06949.
  • 6. Michael Baake and Uwe Grimm, Aperiodic order. Vol. 1. A mathematical invitation, Cambridge University Press, Cambridge, 2013, zbl 1295.37001, MR3136260.
  • 7. Michael Baake and Uwe Grimm, Fourier transform of Rauzy fractals and point spectrum of 1D Pisot inflation tilings, Doc. Math. 25 (2020), 2303-2337, https://www.elibm.org/article/10012081, DOI 10.25537/dm.2020v25.2303-2337, zbl 1462.11060, MR4198843, arxiv 1907.11012.
  • 8. Jason P. Bell, Yann Bugeaud, and Michael Coons, Diophantine approximation of Mahler numbers, Proc. Lond. Math. Soc. (3) 110 (2015), no. 5, 1157-1206, DOI 10.1112/plms/pdv016, zbl 1320.11064, MR3349790, arxiv 1307.4123.
  • 9. Christian Berg and Gunnar Forst, Potential theory on locally compact abelian groups, Springer, Berlin, 1975, zbl 0308.31001, MR0481057.
  • 10. Patrick Billingsley, Probability and measure, 3rd ed., John Wiley \& Sons, New York, 1995, zbl 0822.60002, MR1324786.
  • 11. Alexander I. Bufetov and Boris Solomyak, On the modulus of continuity for spectral measures in substitution dynamics, Adv. Math. 260 (2014), 84-129, DOI 10.1016/j.aim.2014.04.004, zbl 1339.37004, MR3209350, arxiv 1305.7373.
  • 12. Alexander I. Bufetov and Boris Solomyak, A spectral cocycle for substitution systems and translation flows, J. Anal. Math. 141 (2020), no. 1, 165-205, DOI 10.1007/s11854-020-0127-2, zbl 1462.37025, MR4174040, arxiv 1802.04783.
  • 13. Fritz Carlson, Über ganzwertige Funktionen, Math. Z. 11 (1921), no. 1-2, 1-23, DOI 10.1007/BF01203188, zbl 48.0387.01, MR1544479.
  • 14. Alan Cobham, Uniform tag sequences, Math. Systems Theory 6 (1972), 164-192, DOI 10.1007/BF01706087, zbl 0253.02029, MR0457011.
  • 15. Michael Coons and James Evans, A sequential view of self-similar measures; or, what the ghosts of Mahler and Cantor can teach us about dimension, J. Integer Seq. 24 (2021), no. 2, Art. 21.2.5,10 pp., zbl 1460.28007, MR4216102, arxiv 2011.10722.
  • 16. Jean Coquet, A summation formula related to the binary digits, Invent. Math. 73 (1983), 107-115, DOI 10.1007/BF01393827, zbl 0528.10006, MR0707350.
  • 17. Ingrid Daubechies and Jeffrey C. Lagarias, Two-scale difference equations. I. Existence and global regularity of solutions, SIAM J. Math. Anal. 22 (1991), no. 5, 1388-1410, DOI 10.1137/0522089, zbl 0763.42018, MR1112515.
  • 18. Ingrid Daubechies and Jeffrey C. Lagarias, Two-scale difference equations. II. Local regularity, infinite products of matrices and fractals, SIAM J. Math. Anal. 23 (1992), no. 4, 1031-1079, DOI 10.1137/0523059, zbl 0788.42013, MR1166574.
  • 19. Philippe Dumas, Joint spectral radius, dilation equations, and asymptotic behavior of radix-rational sequences, Lin. Alg. Appl. 438 (2013), no. 5, 2107-2126, DOI 10.1016/j.laa.2012.10.013, zbl 1368.11005, MR3005279.
  • 20. Samuel Eilenberg, Automata, Languages, and Machines, Vol. A, Academic Press, 1974, zbl 0317.94045, MR0530382.
  • 21. James Evans, The ghost measures of affine regular sequences, Houston J. Math. Preprint, 2020, to appear, arxiv 2009.01425.
  • 22. Kenneth Falconer, Fractal geometry, third ed., Wiley, Chichester, 2014, zbl 1285.28011, MR3236784.
  • 23. Pierre Fatou, Séries trigonométriques et séries de Taylor, Acta Math. 30 (1906), no. 1, 335-400, DOI 10.1007/BF02418579, JFM 37.0283.01, MR1555035.
  • 24. Raphaël Jungers, The joint spectral radius: Theory and applications, Lecture Notes in Control and Information Sciences, 385, Springer, Berlin, 2009, MR2507938.
  • 25. Shizuo Kakutani, Strictly ergodic symbolic dynamical systems, In Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, 319-326, Univ. California Press, Berkeley, Calif., 1972, zbl 0262.28014, MR0404583.
  • 26. Gerhard Keller, Maximal equicontinuous generic factors and weak model sets, Discrete Contin. Dyn. Syst. 40 (2020), no. 12, 6855-6875, DOI 10.3934/dcds.2020132, zbl 1467.37008, MR4160095, arxiv 1610.03998.
  • 27. Gerhard Keller and Christoph Richard, Dynamics on the graph of the torus parametrisation, Ergod. Th. \& Dynam. Syst. 38 (2018), no. 3, 1048-1085, DOI 10.1017/etds.2016.53, zbl 1388.37051, MR3784254, arxiv 1511.06137.
  • 28. Marc Kesseböhmer and Berndt Strattmann, A multifractal analysis for Stern-Brocot intervals, continued fractions and Diophantine growth rates, J. Reine Angew. Math. (Crelle) 605 (2007) 133-163, DOI 10.1515/CRELLE.2007.029, zbl 1117.37003, MR2338129, arxiv math/0509603.
  • 29. Serge Lang, Real and functional analysis, third ed., Graduate Texts in Mathematics, 142, Springer, New York, 1993, zbl 0831.46001, MR1216137.
  • 30. Kurt Mahler, The spectrum of an array and its application to the study of the translation properties of a simple class of arithmetical functions. II: On the translation properties of a simple class of arithmetical functions, J. Math. Phys. (MIT) 6 (1927), 158-163, DOI 10.1002/sapm192761158, zbl 53.0265.03.
  • 31. Charles A. Micchelli and Hartmut Prautzsch, Uniform refinement of curves, Lin. Alg. Appl. 114/115 (1989), 841-870, DOI 10.1016/0024-3795(89)90495-3, zbl 0668.65011, MR0986909.
  • 32. Kumiko Nishioka, Mahler functions and transcendence, Lecture Notes in Mathematics, 1631, Springer, Berlin, 1996, DOI 10.1007/BFb0093672, zbl 0876.11034, MR1439966.
  • 33. Oskar Perron, Grundlagen für eine Theorie des Jacobischen Kettenbruchalgorithmus, Math. Ann. 64 (1907), 11-76, DOI 10.1007/BF01449880, JFM 38.0262.01, MR1511422.
  • 34. Martine Queffélec, Substitution dynamical systems - spectral analysis, second ed., Lecture Notes in Mathematics, 1294, Springer, Berlin, 2010, DOI 10.1007/978-3-642-11212-6, zbl 1225.11001, MR2590264.
  • 35. Michel Rigo, Formal languages, automata and numeration systems 1, John Wiley \& Sons, New Jersey, 2014, DOI 10.1002/9781119008200, zbl 1326.68002, MR3526118.
  • 36. Gian-Carlo Rota and Gilbert Strang, A note on the joint spectral radius, Indag. Math. 22 (1960), 379-381, zbl 0095.09701, MR0147922.
  • 37. Gábor Szegö, Tschebyscheffsche Polynome und nichtfortsetzbare Potenzreihen, Math. Ann. 87 (1922), no. 1-2, 90-111, DOI 10.1007/BF01458039, JFM 48.0330.03, MR1512103.
  • 38. Norbert Wiener, The spectrum of an array and its application to the study of the translation properties of a simple class of arithmetical functions. I: The spectrum of an array, J. Math. Phys. (MIT) 6 (1927), 145-157, DOI 10.1002/sapm192761145, zbl 53.0265.02, MR1575407.

Affiliation

Coons, Michael
Fakultät für Mathematik, Universität Bielefeld, Postfach 100131, 33501 Bielefeld, Germany
Evans, James
School of Information and Physical Sciences, University of Newcastle, 130 University Drive, Callaghan NSW 2308, Australia
Mañibo, Neil
Fakultät für Mathematik, Universität Bielefeld, Postfach 100131, 33501 Bielefeld, Germany

Downloads