Rational Models for Automorphisms of Fiber Bundles
Doc. Math. 25, 239-265 (2020)
DOI: 10.25537/dm.2020v25.239-265
Communicated by Mike Hill
Summary
Given a fiber bundle, we construct a differential graded Lie algebra model, in the sense of Quillen's rational homotopy theory, for the classifying space of the monoid of homotopy equivalences of the base covered by a fiberwise isomorphism of the total space.
1. P.L. Antonelli, D. Burghelea, P. J. Kahn, The non-finite homotopy type of some diffeomorphism groups. Topology 11 (1972), 1-49. DOI 10.1016/0040-9383(72)90021-3; zbl 0225.57013; MR0292106.
2. A. Berglund, Rational homotopy theory of mapping spaces via Lie theory for \(L_\infty \)-algebras. Homology Homotopy Appl. 17 (2015), no. 2, 343-369. DOI 10.4310/HHA.2015.v17.n2.a16; zbl 1347.55010; MR3431305; arxiv 1110.6145.
3. A. Berglund, I. Madsen, Rational homotopy theory of automorphisms of manifolds. Acta Mathematica 224 (2020), no. 1, 67-185. DOI 10.4310/ACTA.2020.v224.n1.a2; zbl 07194390; arxiv 1401.4096.
4. A. Berglund, B. Saleh, A dg Lie model for relative homotopy automorphisms. Homology, Homotopy and Applications 22 (2020), no. 2, 105-121. DOI 10.4310/HHA.2020.v22.n2.a6; arxiv 1905.01236.
5. P. Booth, P. Heath, C. Morgan, R. Piccinini, \(H\)-spaces of self-equivalences of fibrations and bundles. Proc. London Math. Soc. (3) 49 (1984), no. 1, 111-127. DOI 10.1112/plms/s3-49.1.111; zbl 0525.55005; MR0743373.
6. U. Buijs, S. Smith, Rational homotopy type of the classifying space for fibrewise self-equivalences. Proc. Amer. Math. Soc. 141 (2013), no. 6, 2153-2167. DOI 10.1090/S0002-9939-2012-11560-6; zbl 1275.55006; MR3034442; arxiv 1111.4404.
7. Y. Félix, S. Halperin, J-C. Thomas, Rational Homotopy Theory. Graduate texts in Mathematics 205, Springer, 2001. zbl 0961.55002; MR1802847.
8. Y. Félix, J. Oprea, D. Tanré, Algebraic models in geometry. Oxford Graduate Texts in Mathematics, 17. Oxford University Press, 2008. zbl 1149.53002; MR2403898.
9. A.E. Hatcher, A proof of the Smale conjecture, \( \Diff(S^3)\simeq O(4)\). Ann. of Math. (2) 117 (1983), no. 3, 553-607. DOI 10.2307/2007035; zbl 0531.57028; MR0701256.
10. P. Hilton, G. Mislin, J. Roitberg, Localization of nilpotent groups and spaces. North-Holland Mathematics Studies, No. 15. Notas de Matemática, No. 55. zbl 0323.55016; MR0478146.
11. V. Hinich, DG coalgebras as formal stacks. J. Pure Appl. Algebra 162 (2001), no. 2-3, 209-250. DOI 10.1016/S0022-4049(00)00121-3; zbl 1020.18007; MR1843805; arxiv math/9812034.
12. I. Madsen, J.R. Milgram, The classifying spaces for surgery and cobordism of manifolds. Annals of Mathematics Studies, 92. Princeton University Press, 1979. DOI 10.1515/9781400881475; zbl 0446.57002; MR0548575.
13. J.P. May, Classifying spaces and fibrations. Mem. Amer. Math. Soc. 1 (1975), 1, no. 155. DOI 10.1090/memo/0155; zbl 0321.55033; MR0370579.
14. D. Quillen, Rational homotopy theory. Ann. of Math. (2) 90 (1969) 205-295. DOI 10.2307/1970725; zbl 0191.53702; MR0258031.
15. M. Schlessinger, J. Stasheff, Deformation theory and rational homotopy type. arxiv 1211.1647.
16. D. Tanré, Homotopie rationnelle: modèles de Chen, Quillen, Sullivan. Lecture Notes in Mathematics, 1025. Springer-Verlag, Berlin, 1983. zbl 0539.55001; MR0764769.
Affiliation
Berglund, Alexander
Department of Mathematics, Stockholm University, SE-106 91 Stockholm, Sweden